123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- // Boost.Geometry
- // Copyright (c) 2016-2020 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
- #define BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
- #include <boost/geometry/core/static_assert.hpp>
- #include <boost/geometry/formulas/spherical.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/math/special_functions/hypot.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief Algorithm to compute the vertex longitude of a geodesic segment. Vertex is
- a point on the geodesic that maximizes (or minimizes) the latitude. The algorithm
- is given the vertex latitude.
- */
- //Classes for spesific CS
- template <typename CT>
- class vertex_longitude_on_sphere
- {
- public:
- template <typename T>
- static inline CT apply(T const& lat1, //segment point 1
- T const& lat2, //segment point 2
- T const& lat3, //vertex latitude
- T const& sin_l12,
- T const& cos_l12) //lon1 -lon2
- {
- //https://en.wikipedia.org/wiki/Great-circle_navigation#Finding_way-points
- CT const A = sin(lat1) * cos(lat2) * cos(lat3) * sin_l12;
- CT const B = sin(lat1) * cos(lat2) * cos(lat3) * cos_l12
- - cos(lat1) * sin(lat2) * cos(lat3);
- CT lon = atan2(B, A);
- return lon + math::pi<CT>();
- }
- };
- template <typename CT>
- class vertex_longitude_on_spheroid
- {
- template<typename T>
- static inline void normalize(T& x, T& y)
- {
- T h = boost::math::hypot(x, y);
- x /= h;
- y /= h;
- }
- public:
- template <typename T, typename Spheroid>
- static inline CT apply(T const& lat1, //segment point 1
- T const& lat2, //segment point 2
- T const& lat3, //vertex latitude
- T& alp1,
- Spheroid const& spheroid)
- {
- // We assume that segment points lay on different side w.r.t.
- // the vertex
- // Constants
- CT const c0 = 0;
- CT const c2 = 2;
- CT const half_pi = math::pi<CT>() / c2;
- if (math::equals(lat1, half_pi)
- || math::equals(lat2, half_pi)
- || math::equals(lat1, -half_pi)
- || math::equals(lat2, -half_pi))
- {
- // one segment point is the pole
- return c0;
- }
- // More constants
- CT const f = flattening<CT>(spheroid);
- CT const pi = math::pi<CT>();
- CT const c1 = 1;
- CT const cminus1 = -1;
- // First, compute longitude on auxiliary sphere
- CT const one_minus_f = c1 - f;
- CT const bet1 = atan(one_minus_f * tan(lat1));
- CT const bet2 = atan(one_minus_f * tan(lat2));
- CT const bet3 = atan(one_minus_f * tan(lat3));
- CT cos_bet1 = cos(bet1);
- CT cos_bet2 = cos(bet2);
- CT const sin_bet1 = sin(bet1);
- CT const sin_bet2 = sin(bet2);
- CT const sin_bet3 = sin(bet3);
- CT omg12 = 0;
- if (bet1 < c0)
- {
- cos_bet1 *= cminus1;
- omg12 += pi;
- }
- if (bet2 < c0)
- {
- cos_bet2 *= cminus1;
- omg12 += pi;
- }
- CT const sin_alp1 = sin(alp1);
- CT const cos_alp1 = math::sqrt(c1 - math::sqr(sin_alp1));
- CT const norm = math::sqrt(math::sqr(cos_alp1) + math::sqr(sin_alp1 * sin_bet1));
- CT const sin_alp0 = sin(atan2(sin_alp1 * cos_bet1, norm));
- BOOST_ASSERT(cos_bet2 != c0);
- CT const sin_alp2 = sin_alp1 * cos_bet1 / cos_bet2;
- CT const cos_alp0 = math::sqrt(c1 - math::sqr(sin_alp0));
- CT const cos_alp2 = math::sqrt(c1 - math::sqr(sin_alp2));
- CT const sig1 = atan2(sin_bet1, cos_alp1 * cos_bet1);
- CT const sig2 = atan2(sin_bet2, -cos_alp2 * cos_bet2); //lat3 is a vertex
- CT const cos_sig1 = cos(sig1);
- CT const sin_sig1 = math::sqrt(c1 - math::sqr(cos_sig1));
- CT const cos_sig2 = cos(sig2);
- CT const sin_sig2 = math::sqrt(c1 - math::sqr(cos_sig2));
- CT const omg1 = atan2(sin_alp0 * sin_sig1, cos_sig1);
- CT const omg2 = atan2(sin_alp0 * sin_sig2, cos_sig2);
- omg12 += omg1 - omg2;
- CT const sin_omg12 = sin(omg12);
- CT const cos_omg12 = cos(omg12);
- CT omg13 = geometry::formula::vertex_longitude_on_sphere<CT>
- ::apply(bet1, bet2, bet3, sin_omg12, cos_omg12);
- if (lat1 * lat2 < c0)//different hemispheres
- {
- if ((lat2 - lat1) * lat3 > c0)// ascending segment
- {
- omg13 = pi - omg13;
- }
- }
- // Second, compute the ellipsoidal longitude
- CT const e2 = f * (c2 - f);
- CT const ep = math::sqrt(e2 / (c1 - e2));
- CT const k2 = math::sqr(ep * cos_alp0);
- CT const sqrt_k2_plus_one = math::sqrt(c1 + k2);
- CT const eps = (sqrt_k2_plus_one - c1) / (sqrt_k2_plus_one + c1);
- CT const eps2 = eps * eps;
- CT const n = f / (c2 - f);
- // sig3 is the length from equator to the vertex
- CT sig3;
- if(sin_bet3 > c0)
- {
- sig3 = half_pi;
- } else {
- sig3 = -half_pi;
- }
- CT const cos_sig3 = 0;
- CT const sin_sig3 = 1;
- CT sig13 = sig3 - sig1;
- if (sig13 > pi)
- {
- sig13 -= 2 * pi;
- }
- // Order 2 approximation
- CT const c1over2 = 0.5;
- CT const c1over4 = 0.25;
- CT const c1over8 = 0.125;
- CT const c1over16 = 0.0625;
- CT const c4 = 4;
- CT const c8 = 8;
- CT const A3 = 1 - (c1over2 - c1over2 * n) * eps - c1over4 * eps2;
- CT const C31 = (c1over4 - c1over4 * n) * eps + c1over8 * eps2;
- CT const C32 = c1over16 * eps2;
- CT const sin2_sig3 = c2 * cos_sig3 * sin_sig3;
- CT const sin4_sig3 = sin_sig3 * (-c4 * cos_sig3
- + c8 * cos_sig3 * cos_sig3 * cos_sig3);
- CT const sin2_sig1 = c2 * cos_sig1 * sin_sig1;
- CT const sin4_sig1 = sin_sig1 * (-c4 * cos_sig1
- + c8 * cos_sig1 * cos_sig1 * cos_sig1);
- CT const I3 = A3 * (sig13
- + C31 * (sin2_sig3 - sin2_sig1)
- + C32 * (sin4_sig3 - sin4_sig1));
- CT const sign = bet3 >= c0
- ? c1
- : cminus1;
- CT const dlon_max = omg13 - sign * f * sin_alp0 * I3;
- return dlon_max;
- }
- };
- //CS_tag dispatching
- template <typename CT, typename CS_Tag>
- struct compute_vertex_lon
- {
- BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
- "Not implemented for this coordinate system.",
- CT, CS_Tag);
- };
- template <typename CT>
- struct compute_vertex_lon<CT, spherical_equatorial_tag>
- {
- template <typename Strategy>
- static inline CT apply(CT const& lat1,
- CT const& lat2,
- CT const& vertex_lat,
- CT const& sin_l12,
- CT const& cos_l12,
- CT,
- Strategy)
- {
- return vertex_longitude_on_sphere<CT>
- ::apply(lat1,
- lat2,
- vertex_lat,
- sin_l12,
- cos_l12);
- }
- };
- template <typename CT>
- struct compute_vertex_lon<CT, geographic_tag>
- {
- template <typename Strategy>
- static inline CT apply(CT const& lat1,
- CT const& lat2,
- CT const& vertex_lat,
- CT,
- CT,
- CT& alp1,
- Strategy const& azimuth_strategy)
- {
- return vertex_longitude_on_spheroid<CT>
- ::apply(lat1,
- lat2,
- vertex_lat,
- alp1,
- azimuth_strategy.model());
- }
- };
- // Vertex longitude interface
- // Assume that lon1 < lon2 and vertex_lat is the latitude of the vertex
- template <typename CT, typename CS_Tag>
- class vertex_longitude
- {
- public :
- template <typename Strategy>
- static inline CT apply(CT& lon1,
- CT& lat1,
- CT& lon2,
- CT& lat2,
- CT const& vertex_lat,
- CT& alp1,
- Strategy const& azimuth_strategy)
- {
- CT const c0 = 0;
- CT pi = math::pi<CT>();
- //Vertex is a segment's point
- if (math::equals(vertex_lat, lat1))
- {
- return lon1;
- }
- if (math::equals(vertex_lat, lat2))
- {
- return lon2;
- }
- //Segment lay on meridian
- if (math::equals(lon1, lon2))
- {
- return (std::max)(lat1, lat2);
- }
- BOOST_ASSERT(lon1 < lon2);
- CT dlon = compute_vertex_lon<CT, CS_Tag>::apply(lat1, lat2,
- vertex_lat,
- sin(lon1 - lon2),
- cos(lon1 - lon2),
- alp1,
- azimuth_strategy);
- CT vertex_lon = std::fmod(lon1 + dlon, 2 * pi);
- if (vertex_lat < c0)
- {
- vertex_lon -= pi;
- }
- if (std::abs(lon1 - lon2) > pi)
- {
- vertex_lon -= pi;
- }
- return vertex_lon;
- }
- };
- template <typename CT>
- class vertex_longitude<CT, cartesian_tag>
- {
- public :
- template <typename Strategy>
- static inline CT apply(CT& /*lon1*/,
- CT& /*lat1*/,
- CT& lon2,
- CT& /*lat2*/,
- CT const& /*vertex_lat*/,
- CT& /*alp1*/,
- Strategy const& /*azimuth_strategy*/)
- {
- return lon2;
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_MAXIMUM_LONGITUDE_HPP
|