1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288 |
- // Boost.Geometry
- // Copyright (c) 2023 Adam Wulkiewicz, Lodz, Poland.
- // Copyright (c) 2016-2019 Oracle and/or its affiliates.
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_SJOBERG_INTERSECTION_HPP
- #define BOOST_GEOMETRY_FORMULAS_SJOBERG_INTERSECTION_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/geometry/core/radius.hpp>
- #include <boost/geometry/util/condition.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/spherical.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief The intersection of two great circles as proposed by Sjoberg.
- \see See
- - [Sjoberg02] Lars E. Sjoberg, Intersections on the sphere and ellipsoid, 2002
- http://link.springer.com/article/10.1007/s00190-001-0230-9
- */
- template <typename CT>
- struct sjoberg_intersection_spherical_02
- {
- // TODO: if it will be used as standalone formula
- // support segments on equator and endpoints on poles
- static inline bool apply(CT const& lon1, CT const& lat1, CT const& lon_a2, CT const& lat_a2,
- CT const& lon2, CT const& lat2, CT const& lon_b2, CT const& lat_b2,
- CT & lon, CT & lat)
- {
- CT tan_lat = 0;
- bool res = apply_alt(lon1, lat1, lon_a2, lat_a2,
- lon2, lat2, lon_b2, lat_b2,
- lon, tan_lat);
- if (res)
- {
- lat = atan(tan_lat);
- }
- return res;
- }
- static inline bool apply_alt(CT const& lon1, CT const& lat1, CT const& lon_a2, CT const& lat_a2,
- CT const& lon2, CT const& lat2, CT const& lon_b2, CT const& lat_b2,
- CT & lon, CT & tan_lat)
- {
- CT const cos_lon1 = cos(lon1);
- CT const sin_lon1 = sin(lon1);
- CT const cos_lon2 = cos(lon2);
- CT const sin_lon2 = sin(lon2);
- CT const sin_lat1 = sin(lat1);
- CT const sin_lat2 = sin(lat2);
- CT const cos_lat1 = cos(lat1);
- CT const cos_lat2 = cos(lat2);
- CT const tan_lat_a2 = tan(lat_a2);
- CT const tan_lat_b2 = tan(lat_b2);
- return apply(lon1, lon_a2, lon2, lon_b2,
- sin_lon1, cos_lon1, sin_lat1, cos_lat1,
- sin_lon2, cos_lon2, sin_lat2, cos_lat2,
- tan_lat_a2, tan_lat_b2,
- lon, tan_lat);
- }
- private:
- static inline bool apply(CT const& lon1, CT const& lon_a2, CT const& lon2, CT const& lon_b2,
- CT const& sin_lon1, CT const& cos_lon1, CT const& sin_lat1, CT const& cos_lat1,
- CT const& sin_lon2, CT const& cos_lon2, CT const& sin_lat2, CT const& cos_lat2,
- CT const& tan_lat_a2, CT const& tan_lat_b2,
- CT & lon, CT & tan_lat)
- {
- // NOTE:
- // cos_lat_ = 0 <=> segment on equator
- // tan_alpha_ = 0 <=> segment vertical
- CT const tan_lat1 = sin_lat1 / cos_lat1; //tan(lat1);
- CT const tan_lat2 = sin_lat2 / cos_lat2; //tan(lat2);
- CT const dlon1 = lon_a2 - lon1;
- CT const sin_dlon1 = sin(dlon1);
- CT const dlon2 = lon_b2 - lon2;
- CT const sin_dlon2 = sin(dlon2);
- CT const cos_dlon1 = cos(dlon1);
- CT const cos_dlon2 = cos(dlon2);
- CT const tan_alpha1_x = cos_lat1 * tan_lat_a2 - sin_lat1 * cos_dlon1;
- CT const tan_alpha2_x = cos_lat2 * tan_lat_b2 - sin_lat2 * cos_dlon2;
- CT const c0 = 0;
- bool const is_vertical1 = math::equals(sin_dlon1, c0) || math::equals(tan_alpha1_x, c0);
- bool const is_vertical2 = math::equals(sin_dlon2, c0) || math::equals(tan_alpha2_x, c0);
- CT tan_alpha1 = 0;
- CT tan_alpha2 = 0;
- if (is_vertical1 && is_vertical2)
- {
- // circles intersect at one of the poles or are collinear
- return false;
- }
- else if (is_vertical1)
- {
- tan_alpha2 = sin_dlon2 / tan_alpha2_x;
- lon = lon1;
- }
- else if (is_vertical2)
- {
- tan_alpha1 = sin_dlon1 / tan_alpha1_x;
- lon = lon2;
- }
- else
- {
- tan_alpha1 = sin_dlon1 / tan_alpha1_x;
- tan_alpha2 = sin_dlon2 / tan_alpha2_x;
- CT const T1 = tan_alpha1 * cos_lat1;
- CT const T2 = tan_alpha2 * cos_lat2;
- CT const T1T2 = T1*T2;
- CT const tan_lon_y = T1 * sin_lon2 - T2 * sin_lon1 + T1T2 * (tan_lat1 * cos_lon1 - tan_lat2 * cos_lon2);
- CT const tan_lon_x = T1 * cos_lon2 - T2 * cos_lon1 - T1T2 * (tan_lat1 * sin_lon1 - tan_lat2 * sin_lon2);
- lon = atan2(tan_lon_y, tan_lon_x);
- }
- // choose closer result
- CT const pi = math::pi<CT>();
- CT const lon_2 = lon > c0 ? lon - pi : lon + pi;
- CT const lon_dist1 = (std::max)((std::min)(math::longitude_difference<radian>(lon1, lon),
- math::longitude_difference<radian>(lon_a2, lon)),
- (std::min)(math::longitude_difference<radian>(lon2, lon),
- math::longitude_difference<radian>(lon_b2, lon)));
- CT const lon_dist2 = (std::max)((std::min)(math::longitude_difference<radian>(lon1, lon_2),
- math::longitude_difference<radian>(lon_a2, lon_2)),
- (std::min)(math::longitude_difference<radian>(lon2, lon_2),
- math::longitude_difference<radian>(lon_b2, lon_2)));
- if (lon_dist2 < lon_dist1)
- {
- lon = lon_2;
- }
- CT const sin_lon = sin(lon);
- CT const cos_lon = cos(lon);
- if (math::abs(tan_alpha1) >= math::abs(tan_alpha2)) // pick less vertical segment
- {
- CT const sin_dlon_1 = sin_lon * cos_lon1 - cos_lon * sin_lon1;
- CT const cos_dlon_1 = cos_lon * cos_lon1 + sin_lon * sin_lon1;
- CT const lat_y_1 = sin_dlon_1 + tan_alpha1 * sin_lat1 * cos_dlon_1;
- CT const lat_x_1 = tan_alpha1 * cos_lat1;
- tan_lat = lat_y_1 / lat_x_1;
- }
- else
- {
- CT const sin_dlon_2 = sin_lon * cos_lon2 - cos_lon * sin_lon2;
- CT const cos_dlon_2 = cos_lon * cos_lon2 + sin_lon * sin_lon2;
- CT const lat_y_2 = sin_dlon_2 + tan_alpha2 * sin_lat2 * cos_dlon_2;
- CT const lat_x_2 = tan_alpha2 * cos_lat2;
- tan_lat = lat_y_2 / lat_x_2;
- }
- return true;
- }
- };
- /*! Approximation of dLambda_j [Sjoberg07], expanded into taylor series in e^2
- Maxima script:
- dLI_j(c_j, sinB_j, sinB) := integrate(1 / (sqrt(1 - c_j ^ 2 - x ^ 2)*(1 + sqrt(1 - e2*(1 - x ^ 2)))), x, sinB_j, sinB);
- dL_j(c_j, B_j, B) := -e2 * c_j * dLI_j(c_j, B_j, B);
- S: taylor(dLI_j(c_j, sinB_j, sinB), e2, 0, 3);
- assume(c_j < 1);
- assume(c_j > 0);
- L1: factor(integrate(sqrt(-x ^ 2 - c_j ^ 2 + 1) / (x ^ 2 + c_j ^ 2 - 1), x));
- L2: factor(integrate(((x ^ 2 - 1)*sqrt(-x ^ 2 - c_j ^ 2 + 1)) / (x ^ 2 + c_j ^ 2 - 1), x));
- L3: factor(integrate(((x ^ 4 - 2 * x ^ 2 + 1)*sqrt(-x ^ 2 - c_j ^ 2 + 1)) / (x ^ 2 + c_j ^ 2 - 1), x));
- L4: factor(integrate(((x ^ 6 - 3 * x ^ 4 + 3 * x ^ 2 - 1)*sqrt(-x ^ 2 - c_j ^ 2 + 1)) / (x ^ 2 + c_j ^ 2 - 1), x));
- \see See
- - [Sjoberg07] Lars E. Sjoberg, Geodetic intersection on the ellipsoid, 2007
- http://link.springer.com/article/10.1007/s00190-007-0204-7
- */
- template <unsigned int Order, typename CT>
- inline CT sjoberg_d_lambda_e_sqr(CT const& sin_betaj, CT const& sin_beta,
- CT const& Cj, CT const& sqrt_1_Cj_sqr,
- CT const& e_sqr)
- {
- using math::detail::bounded;
- if (BOOST_GEOMETRY_CONDITION(Order == 0))
- {
- return 0;
- }
- CT const c1 = 1;
- CT const c2 = 2;
- CT const asin_B = asin(bounded(sin_beta / sqrt_1_Cj_sqr, -c1, c1));
- CT const asin_Bj = asin(sin_betaj / sqrt_1_Cj_sqr);
- CT const L0 = (asin_B - asin_Bj) / c2;
- if (BOOST_GEOMETRY_CONDITION(Order == 1))
- {
- return -Cj * e_sqr * L0;
- }
- CT const c0 = 0;
- CT const c16 = 16;
- CT const X = sin_beta;
- CT const Xj = sin_betaj;
- CT const X_sqr = math::sqr(X);
- CT const Xj_sqr = math::sqr(Xj);
- CT const Cj_sqr = math::sqr(Cj);
- CT const Cj_sqr_plus_one = Cj_sqr + c1;
- CT const one_minus_Cj_sqr = c1 - Cj_sqr;
- CT const sqrt_Y = math::sqrt(bounded(-X_sqr + one_minus_Cj_sqr, c0));
- CT const sqrt_Yj = math::sqrt(-Xj_sqr + one_minus_Cj_sqr);
- CT const L1 = (Cj_sqr_plus_one * (asin_B - asin_Bj) + X * sqrt_Y - Xj * sqrt_Yj) / c16;
- if (BOOST_GEOMETRY_CONDITION(Order == 2))
- {
- return -Cj * e_sqr * (L0 + e_sqr * L1);
- }
- CT const c3 = 3;
- CT const c5 = 5;
- CT const c128 = 128;
- CT const E = Cj_sqr * (c3 * Cj_sqr + c2) + c3;
- CT const F = X * (-c2 * X_sqr + c3 * Cj_sqr + c5);
- CT const Fj = Xj * (-c2 * Xj_sqr + c3 * Cj_sqr + c5);
- CT const L2 = (E * (asin_B - asin_Bj) + F * sqrt_Y - Fj * sqrt_Yj) / c128;
- if (BOOST_GEOMETRY_CONDITION(Order == 3))
- {
- return -Cj * e_sqr * (L0 + e_sqr * (L1 + e_sqr * L2));
- }
- CT const c8 = 8;
- CT const c9 = 9;
- CT const c10 = 10;
- CT const c15 = 15;
- CT const c24 = 24;
- CT const c26 = 26;
- CT const c33 = 33;
- CT const c6144 = 6144;
- CT const G = Cj_sqr * (Cj_sqr * (Cj_sqr * c15 + c9) + c9) + c15;
- CT const H = -c10 * Cj_sqr - c26;
- CT const I = Cj_sqr * (Cj_sqr * c15 + c24) + c33;
- CT const J = X_sqr * (X * (c8 * X_sqr + H)) + X * I;
- CT const Jj = Xj_sqr * (Xj * (c8 * Xj_sqr + H)) + Xj * I;
- CT const L3 = (G * (asin_B - asin_Bj) + J * sqrt_Y - Jj * sqrt_Yj) / c6144;
- // Order 4 and higher
- return -Cj * e_sqr * (L0 + e_sqr * (L1 + e_sqr * (L2 + e_sqr * L3)));
- }
- /*!
- \brief The representation of geodesic as proposed by Sjoberg.
- \see See
- - [Sjoberg07] Lars E. Sjoberg, Geodetic intersection on the ellipsoid, 2007
- http://link.springer.com/article/10.1007/s00190-007-0204-7
- - [Sjoberg12] Lars E. Sjoberg, Solutions to the ellipsoidal Clairaut constant
- and the inverse geodetic problem by numerical integration, 2012
- https://www.degruyter.com/view/j/jogs.2012.2.issue-3/v10156-011-0037-4/v10156-011-0037-4.xml
- */
- template <typename CT, unsigned int Order>
- class sjoberg_geodesic
- {
- sjoberg_geodesic() {}
- static int sign_C(CT const& alphaj)
- {
- CT const c0 = 0;
- CT const c2 = 2;
- CT const pi = math::pi<CT>();
- CT const pi_half = pi / c2;
- return (pi_half < alphaj && alphaj < pi) || (-pi_half < alphaj && alphaj < c0) ? -1 : 1;
- }
- public:
- sjoberg_geodesic(CT const& lon, CT const& lat, CT const& alpha, CT const& f)
- : lonj(lon)
- , latj(lat)
- , alphaj(alpha)
- {
- CT const c0 = 0;
- CT const c1 = 1;
- CT const c2 = 2;
- //CT const pi = math::pi<CT>();
- //CT const pi_half = pi / c2;
- one_minus_f = c1 - f;
- e_sqr = f * (c2 - f);
- tan_latj = tan(lat);
- tan_betaj = one_minus_f * tan_latj;
- betaj = atan(tan_betaj);
- sin_betaj = sin(betaj);
- cos_betaj = cos(betaj);
- sin_alphaj = sin(alphaj);
- // Clairaut constant (lower-case in the paper)
- Cj = sign_C(alphaj) * cos_betaj * sin_alphaj;
- Cj_sqr = math::sqr(Cj);
- sqrt_1_Cj_sqr = math::sqrt(c1 - Cj_sqr);
- sign_lon_diff = alphaj >= 0 ? 1 : -1; // || alphaj == -pi ?
- //sign_lon_diff = 1;
- is_on_equator = math::equals(sqrt_1_Cj_sqr, c0);
- is_Cj_zero = math::equals(Cj, c0);
- t0j = c0;
- asin_tj_t0j = c0;
- if (! is_Cj_zero)
- {
- t0j = sqrt_1_Cj_sqr / Cj;
- }
- if (! is_on_equator)
- {
- //asin_tj_t0j = asin(tan_betaj / t0j);
- asin_tj_t0j = asin(tan_betaj * Cj / sqrt_1_Cj_sqr);
- }
- }
- struct vertex_data
- {
- //CT beta0j;
- CT sin_beta0j;
- CT dL0j;
- CT lon0j;
- };
- vertex_data get_vertex_data() const
- {
- CT const c2 = 2;
- CT const pi = math::pi<CT>();
- CT const pi_half = pi / c2;
- vertex_data res;
- if (! is_Cj_zero)
- {
- //res.beta0j = atan(t0j);
- //res.sin_beta0j = sin(res.beta0j);
- res.sin_beta0j = math::sign(t0j) * sqrt_1_Cj_sqr;
- res.dL0j = d_lambda(res.sin_beta0j);
- res.lon0j = lonj + sign_lon_diff * (pi_half - asin_tj_t0j + res.dL0j);
- }
- else
- {
- //res.beta0j = pi_half;
- //res.sin_beta0j = betaj >= 0 ? 1 : -1;
- res.sin_beta0j = 1;
- res.dL0j = 0;
- res.lon0j = lonj;
- }
- return res;
- }
- bool is_sin_beta_ok(CT const& sin_beta) const
- {
- CT const c1 = 1;
- return math::abs(sin_beta / sqrt_1_Cj_sqr) <= c1;
- }
- bool k_diff(CT const& sin_beta,
- CT & delta_k) const
- {
- if (is_Cj_zero)
- {
- delta_k = 0;
- return true;
- }
- // beta out of bounds and not close
- if (! (is_sin_beta_ok(sin_beta)
- || math::equals(math::abs(sin_beta), sqrt_1_Cj_sqr)) )
- {
- return false;
- }
- // NOTE: beta may be slightly out of bounds here but d_lambda handles that
- CT const dLj = d_lambda(sin_beta);
- delta_k = sign_lon_diff * (/*asin_t_t0j*/ - asin_tj_t0j + dLj);
- return true;
- }
- bool lon_diff(CT const& sin_beta, CT const& t,
- CT & delta_lon) const
- {
- using math::detail::bounded;
- CT const c1 = 1;
- if (is_Cj_zero)
- {
- delta_lon = 0;
- return true;
- }
- CT delta_k = 0;
- if (! k_diff(sin_beta, delta_k))
- {
- return false;
- }
- CT const t_t0j = t / t0j;
- // NOTE: t may be slightly out of bounds here
- CT const asin_t_t0j = asin(bounded(t_t0j, -c1, c1));
- delta_lon = sign_lon_diff * asin_t_t0j + delta_k;
- return true;
- }
- bool k_diffs(CT const& sin_beta, vertex_data const& vd,
- CT & delta_k_before, CT & delta_k_behind,
- bool check_sin_beta = true) const
- {
- CT const pi = math::pi<CT>();
- if (is_Cj_zero)
- {
- delta_k_before = 0;
- delta_k_behind = sign_lon_diff * pi;
- return true;
- }
- // beta out of bounds and not close
- if (check_sin_beta
- && ! (is_sin_beta_ok(sin_beta)
- || math::equals(math::abs(sin_beta), sqrt_1_Cj_sqr)) )
- {
- return false;
- }
- // NOTE: beta may be slightly out of bounds here but d_lambda handles that
- CT const dLj = d_lambda(sin_beta);
- delta_k_before = sign_lon_diff * (/*asin_t_t0j*/ - asin_tj_t0j + dLj);
- // This version require no additional dLj calculation
- delta_k_behind = sign_lon_diff * (pi /*- asin_t_t0j*/ - asin_tj_t0j + vd.dL0j + (vd.dL0j - dLj));
- // [Sjoberg12]
- //CT const dL101 = d_lambda(sin_betaj, vd.sin_beta0j);
- // WARNING: the following call might not work if beta was OoB because only the second argument is bounded
- //CT const dL_01 = d_lambda(sin_beta, vd.sin_beta0j);
- //delta_k_behind = sign_lon_diff * (pi /*- asin_t_t0j*/ - asin_tj_t0j + dL101 + dL_01);
- return true;
- }
- bool lon_diffs(CT const& sin_beta, CT const& t, vertex_data const& vd,
- CT & delta_lon_before, CT & delta_lon_behind) const
- {
- using math::detail::bounded;
- CT const c1 = 1;
- CT const pi = math::pi<CT>();
- if (is_Cj_zero)
- {
- delta_lon_before = 0;
- delta_lon_behind = sign_lon_diff * pi;
- return true;
- }
- CT delta_k_before = 0, delta_k_behind = 0;
- if (! k_diffs(sin_beta, vd, delta_k_before, delta_k_behind))
- {
- return false;
- }
- CT const t_t0j = t / t0j;
- // NOTE: t may be slightly out of bounds here
- CT const asin_t_t0j = asin(bounded(t_t0j, -c1, c1));
- CT const sign_asin_t_t0j = sign_lon_diff * asin_t_t0j;
- delta_lon_before = sign_asin_t_t0j + delta_k_before;
- delta_lon_behind = -sign_asin_t_t0j + delta_k_behind;
- return true;
- }
- bool lon(CT const& sin_beta, CT const& t, vertex_data const& vd,
- CT & lon_before, CT & lon_behind) const
- {
- using math::detail::bounded;
- CT const c1 = 1;
- CT const pi = math::pi<CT>();
- if (is_Cj_zero)
- {
- lon_before = lonj;
- lon_behind = lonj + sign_lon_diff * pi;
- return true;
- }
- if (! (is_sin_beta_ok(sin_beta)
- || math::equals(math::abs(sin_beta), sqrt_1_Cj_sqr)) )
- {
- return false;
- }
- CT const t_t0j = t / t0j;
- CT const asin_t_t0j = asin(bounded(t_t0j, -c1, c1));
- CT const dLj = d_lambda(sin_beta);
- lon_before = lonj + sign_lon_diff * (asin_t_t0j - asin_tj_t0j + dLj);
- lon_behind = vd.lon0j + (vd.lon0j - lon_before);
- return true;
- }
- CT lon(CT const& delta_lon) const
- {
- return lonj + delta_lon;
- }
- CT lat(CT const& t) const
- {
- // t = tan(beta) = (1-f)tan(lat)
- return atan(t / one_minus_f);
- }
- void vertex(CT & lon, CT & lat) const
- {
- lon = get_vertex_data().lon0j;
- if (! is_Cj_zero)
- {
- lat = sjoberg_geodesic::lat(t0j);
- }
- else
- {
- CT const c2 = 2;
- lat = math::pi<CT>() / c2;
- }
- }
- CT lon_of_equator_intersection() const
- {
- CT const c0 = 0;
- CT const dLj = d_lambda(c0);
- CT const asin_tj_t0j = asin(Cj * tan_betaj / sqrt_1_Cj_sqr);
- return lonj - asin_tj_t0j + dLj;
- }
- CT d_lambda(CT const& sin_beta) const
- {
- return sjoberg_d_lambda_e_sqr<Order>(sin_betaj, sin_beta, Cj, sqrt_1_Cj_sqr, e_sqr);
- }
- // [Sjoberg12]
- /*CT d_lambda(CT const& sin_beta1, CT const& sin_beta2) const
- {
- return sjoberg_d_lambda_e_sqr<Order>(sin_beta1, sin_beta2, Cj, sqrt_1_Cj_sqr, e_sqr);
- }*/
- CT lonj;
- CT latj;
- CT alphaj;
- CT one_minus_f;
- CT e_sqr;
- CT tan_latj;
- CT tan_betaj;
- CT betaj;
- CT sin_betaj;
- CT cos_betaj;
- CT sin_alphaj;
- CT Cj;
- CT Cj_sqr;
- CT sqrt_1_Cj_sqr;
- int sign_lon_diff;
- bool is_on_equator;
- bool is_Cj_zero;
- CT t0j;
- CT asin_tj_t0j;
- };
- /*!
- \brief The intersection of two geodesics as proposed by Sjoberg.
- \see See
- - [Sjoberg02] Lars E. Sjoberg, Intersections on the sphere and ellipsoid, 2002
- http://link.springer.com/article/10.1007/s00190-001-0230-9
- - [Sjoberg07] Lars E. Sjoberg, Geodetic intersection on the ellipsoid, 2007
- http://link.springer.com/article/10.1007/s00190-007-0204-7
- - [Sjoberg12] Lars E. Sjoberg, Solutions to the ellipsoidal Clairaut constant
- and the inverse geodetic problem by numerical integration, 2012
- https://www.degruyter.com/view/j/jogs.2012.2.issue-3/v10156-011-0037-4/v10156-011-0037-4.xml
- */
- template
- <
- typename CT,
- template <typename, bool, bool, bool, bool, bool> class Inverse,
- unsigned int Order = 4
- >
- class sjoberg_intersection
- {
- typedef sjoberg_geodesic<CT, Order> geodesic_type;
- typedef Inverse<CT, false, true, false, false, false> inverse_type;
- typedef typename inverse_type::result_type inverse_result;
- static bool const enable_02 = true;
- static int const max_iterations_02 = 10;
- static int const max_iterations_07 = 20;
- public:
- template <typename T1, typename T2, typename Spheroid>
- static inline bool apply(T1 const& lona1, T1 const& lata1,
- T1 const& lona2, T1 const& lata2,
- T2 const& lonb1, T2 const& latb1,
- T2 const& lonb2, T2 const& latb2,
- CT & lon, CT & lat,
- Spheroid const& spheroid)
- {
- CT const lon_a1 = lona1;
- CT const lat_a1 = lata1;
- CT const lon_a2 = lona2;
- CT const lat_a2 = lata2;
- CT const lon_b1 = lonb1;
- CT const lat_b1 = latb1;
- CT const lon_b2 = lonb2;
- CT const lat_b2 = latb2;
- inverse_result const res1 = inverse_type::apply(lon_a1, lat_a1, lon_a2, lat_a2, spheroid);
- inverse_result const res2 = inverse_type::apply(lon_b1, lat_b1, lon_b2, lat_b2, spheroid);
- return apply(lon_a1, lat_a1, lon_a2, lat_a2, res1.azimuth,
- lon_b1, lat_b1, lon_b2, lat_b2, res2.azimuth,
- lon, lat, spheroid);
- }
- // TODO: Currently may not work correctly if one of the endpoints is the pole
- template <typename Spheroid>
- static inline bool apply(CT const& lon_a1, CT const& lat_a1, CT const& lon_a2, CT const& lat_a2, CT const& alpha_a1,
- CT const& lon_b1, CT const& lat_b1, CT const& lon_b2, CT const& lat_b2, CT const& alpha_b1,
- CT & lon, CT & lat,
- Spheroid const& spheroid)
- {
- // coordinates in radians
- CT const c0 = 0;
- CT const c1 = 1;
- CT const f = formula::flattening<CT>(spheroid);
- CT const one_minus_f = c1 - f;
- geodesic_type geod1(lon_a1, lat_a1, alpha_a1, f);
- geodesic_type geod2(lon_b1, lat_b1, alpha_b1, f);
- // Cj = 1 if on equator <=> sqrt_1_Cj_sqr = 0
- // Cj = 0 if vertical <=> sqrt_1_Cj_sqr = 1
- if (geod1.is_on_equator && geod2.is_on_equator)
- {
- return false;
- }
- else if (geod1.is_on_equator)
- {
- lon = geod2.lon_of_equator_intersection();
- lat = c0;
- return true;
- }
- else if (geod2.is_on_equator)
- {
- lon = geod1.lon_of_equator_intersection();
- lat = c0;
- return true;
- }
- // (lon1 - lon2) normalized to (-180, 180]
- CT const lon1_minus_lon2 = math::longitude_distance_signed<radian>(geod2.lonj, geod1.lonj);
- // vertical segments
- if (geod1.is_Cj_zero && geod2.is_Cj_zero)
- {
- CT const pi = math::pi<CT>();
- // the geodesics are parallel, the intersection point cannot be calculated
- if ( math::equals(lon1_minus_lon2, c0)
- || math::equals(lon1_minus_lon2 + (lon1_minus_lon2 < c0 ? pi : -pi), c0) )
- {
- return false;
- }
- lon = c0;
- // the geodesics intersect at one of the poles
- CT const pi_half = pi / CT(2);
- CT const abs_lat_a1 = math::abs(lat_a1);
- CT const abs_lat_a2 = math::abs(lat_a2);
- if (math::equals(abs_lat_a1, abs_lat_a2))
- {
- lat = pi_half;
- }
- else
- {
- // pick the pole closest to one of the points of the first segment
- CT const& closer_lat = abs_lat_a1 > abs_lat_a2 ? lat_a1 : lat_a2;
- lat = closer_lat >= 0 ? pi_half : -pi_half;
- }
- return true;
- }
- CT lon_sph = 0;
- // Starting tan(beta)
- CT t = 0;
- /*if (geod1.is_Cj_zero)
- {
- CT const k_base = lon1_minus_lon2 + geod2.sign_lon_diff * geod2.asin_tj_t0j;
- t = sin(k_base) * geod2.t0j;
- lon_sph = vertical_intersection_longitude(geod1.lonj, lon_b1, lon_b2);
- }
- else if (geod2.is_Cj_zero)
- {
- CT const k_base = lon1_minus_lon2 - geod1.sign_lon_diff * geod1.asin_tj_t0j;
- t = sin(-k_base) * geod1.t0j;
- lon_sph = vertical_intersection_longitude(geod2.lonj, lon_a1, lon_a2);
- }
- else*/
- {
- // TODO: Consider using betas instead of latitudes.
- // Some function calls might be saved this way.
- CT tan_lat_sph = 0;
- sjoberg_intersection_spherical_02<CT>::apply_alt(lon_a1, lat_a1, lon_a2, lat_a2,
- lon_b1, lat_b1, lon_b2, lat_b2,
- lon_sph, tan_lat_sph);
- // Return for sphere
- if (math::equals(f, c0))
- {
- lon = lon_sph;
- lat = atan(tan_lat_sph);
- return true;
- }
- t = one_minus_f * tan_lat_sph; // tan(beta)
- }
- // TODO: no need to calculate atan here if reduced latitudes were used
- // instead of latitudes above, in sjoberg_intersection_spherical_02
- CT const beta = atan(t);
- if (enable_02 && newton_method(geod1, geod2, beta, t, lon1_minus_lon2, lon_sph, lon, lat))
- {
- // TODO: Newton's method may return wrong result in some specific cases
- // Detected for sphere and nearly sphere, e.g. A=6371228, B=6371227
- // and segments s1=(-121 -19,37 8) and s2=(-19 -15,-104 -58)
- // It's unclear if this is a bug or a characteristic of this method
- // so until this is investigated check if the resulting longitude is
- // between endpoints of the segments. It should be since before calling
- // this formula sides of endpoints WRT other segments are checked.
- if ( is_result_longitude_ok(geod1, lon_a1, lon_a2, lon)
- && is_result_longitude_ok(geod2, lon_b1, lon_b2, lon) )
- {
- return true;
- }
- }
- return converge_07(geod1, geod2, beta, t, lon1_minus_lon2, lon_sph, lon, lat);
- }
- private:
- static inline bool newton_method(geodesic_type const& geod1, geodesic_type const& geod2, // in
- CT beta, CT t, CT const& lon1_minus_lon2, CT const& lon_sph, // in
- CT & lon, CT & lat) // out
- {
- CT const c0 = 0;
- CT const c1 = 1;
- CT const e_sqr = geod1.e_sqr;
- CT lon1_diff = 0;
- CT lon2_diff = 0;
- // The segment is vertical and intersection point is behind the vertex
- // this method is unable to calculate correct result
- if (geod1.is_Cj_zero && math::abs(geod1.lonj - lon_sph) > math::half_pi<CT>())
- return false;
- if (geod2.is_Cj_zero && math::abs(geod2.lonj - lon_sph) > math::half_pi<CT>())
- return false;
- CT abs_dbeta_last = 0;
- // [Sjoberg02] converges faster than solution in [Sjoberg07]
- // Newton-Raphson method
- for (int i = 0; i < max_iterations_02; ++i)
- {
- CT const cos_beta = cos(beta);
- if (math::equals(cos_beta, c0))
- {
- return false;
- }
- CT const sin_beta = sin(beta);
- CT const cos_beta_sqr = math::sqr(cos_beta);
- CT const G = c1 - e_sqr * cos_beta_sqr;
- CT f1 = 0;
- CT f2 = 0;
- if (!geod1.is_Cj_zero)
- {
- bool is_beta_ok = geod1.lon_diff(sin_beta, t, lon1_diff);
- if (is_beta_ok)
- {
- CT const H = cos_beta_sqr - geod1.Cj_sqr;
- if (math::equals(H, c0))
- {
- return false;
- }
- f1 = geod1.Cj / cos_beta * math::sqrt(G / H);
- }
- else
- {
- return false;
- }
- }
- if (!geod2.is_Cj_zero)
- {
- bool is_beta_ok = geod2.lon_diff(sin_beta, t, lon2_diff);
- if (is_beta_ok)
- {
- CT const H = cos_beta_sqr - geod2.Cj_sqr;
- if (math::equals(H, c0))
- {
- // NOTE: This may happen for segment nearly
- // at the equator. Detected for (radian):
- // (-0.0872665 -0.0872665, -0.0872665 0.0872665)
- // x
- // (0 1.57e-07, -0.392699 1.57e-07)
- return false;
- }
- f2 = geod2.Cj / cos_beta * math::sqrt(G / H);
- }
- else
- {
- return false;
- }
- }
- // NOTE: Things may go wrong if the IP is near the vertex
- // 1. May converge into the wrong direction (from the other way around).
- // This happens when the starting point is on the other side than the vertex
- // 2. During converging may "jump" into the other side of the vertex.
- // In this case sin_beta/sqrt_1_Cj_sqr and t/t0j is not in [-1, 1]
- // 3. f1-f2 may be 0 which means that the intermediate point is on the vertex
- // In this case it's not possible to check if this is the correct result
- // 4. f1-f2 may also be 0 in other cases, e.g.
- // geodesics are symmetrical wrt equator and longitude directions are different
- CT const dbeta_denom = f1 - f2;
- //CT const dbeta_denom = math::abs(f1) + math::abs(f2);
- if (math::equals(dbeta_denom, c0))
- {
- return false;
- }
- // The sign of dbeta is changed WRT [Sjoberg02]
- CT const dbeta = (lon1_minus_lon2 + lon1_diff - lon2_diff) / dbeta_denom;
- CT const abs_dbeta = math::abs(dbeta);
- if (i > 0 && abs_dbeta > abs_dbeta_last)
- {
- // The algorithm is not converging
- // The intersection may be on the other side of the vertex
- return false;
- }
- abs_dbeta_last = abs_dbeta;
- if (math::equals(dbeta, c0))
- {
- // Result found
- break;
- }
- // Because the sign of dbeta is changed WRT [Sjoberg02] dbeta is subtracted here
- beta = beta - dbeta;
- t = tan(beta);
- }
- lat = geod1.lat(t);
- // NOTE: if Cj is 0 then the result is lonj or lonj+180
- lon = ! geod1.is_Cj_zero
- ? geod1.lon(lon1_diff)
- : geod2.lon(lon2_diff);
- return true;
- }
- static inline bool is_result_longitude_ok(geodesic_type const& geod,
- CT const& lon1, CT const& lon2, CT const& lon)
- {
- CT const c0 = 0;
- if (geod.is_Cj_zero)
- return true; // don't check vertical segment
- CT dist1p = math::longitude_distance_signed<radian>(lon1, lon);
- CT dist12 = math::longitude_distance_signed<radian>(lon1, lon2);
- if (dist12 < c0)
- {
- dist1p = -dist1p;
- dist12 = -dist12;
- }
- return (c0 <= dist1p && dist1p <= dist12)
- || math::equals(dist1p, c0)
- || math::equals(dist1p, dist12);
- }
- struct geodesics_type
- {
- geodesics_type(geodesic_type const& g1, geodesic_type const& g2)
- : geod1(g1)
- , geod2(g2)
- , vertex1(geod1.get_vertex_data())
- , vertex2(geod2.get_vertex_data())
- {}
- geodesic_type const& geod1;
- geodesic_type const& geod2;
- typename geodesic_type::vertex_data vertex1;
- typename geodesic_type::vertex_data vertex2;
- };
- struct converge_07_result
- {
- converge_07_result()
- : lon1(0), lon2(0), k1_diff(0), k2_diff(0), t1(0), t2(0)
- {}
- CT lon1, lon2;
- CT k1_diff, k2_diff;
- CT t1, t2;
- };
- static inline bool converge_07(geodesic_type const& geod1, geodesic_type const& geod2,
- CT beta, CT t,
- CT const& lon1_minus_lon2, CT const& lon_sph,
- CT & lon, CT & lat)
- {
- //CT const c0 = 0;
- //CT const c1 = 1;
- //CT const c2 = 2;
- //CT const pi = math::pi<CT>();
- geodesics_type geodesics(geod1, geod2);
- converge_07_result result;
- // calculate first pair of longitudes
- if (!converge_07_step_one(CT(sin(beta)), t, lon1_minus_lon2, geodesics, lon_sph, result, false))
- {
- return false;
- }
- int t_direction = 0;
- CT lon_diff_prev = math::longitude_difference<radian>(result.lon1, result.lon2);
- // [Sjoberg07]
- for (int i = 2; i < max_iterations_07; ++i)
- {
- // pick t candidates from previous result based on dir
- CT t_cand1 = result.t1;
- CT t_cand2 = result.t2;
- // if direction is 0 the closer one is the first
- if (t_direction < 0)
- {
- t_cand1 = (std::min)(result.t1, result.t2);
- t_cand2 = (std::max)(result.t1, result.t2);
- }
- else if (t_direction > 0)
- {
- t_cand1 = (std::max)(result.t1, result.t2);
- t_cand2 = (std::min)(result.t1, result.t2);
- }
- else
- {
- t_direction = t_cand1 < t_cand2 ? -1 : 1;
- }
- CT t1 = t;
- CT beta1 = beta;
- // check if the further calculation is needed
- if (converge_07_update(t1, beta1, t_cand1))
- {
- break;
- }
- bool try_t2 = false;
- converge_07_result result_curr;
- if (converge_07_step_one(CT(sin(beta1)), t1, lon1_minus_lon2, geodesics, lon_sph, result_curr))
- {
- CT const lon_diff1 = math::longitude_difference<radian>(result_curr.lon1, result_curr.lon2);
- if (lon_diff_prev > lon_diff1)
- {
- t = t1;
- beta = beta1;
- lon_diff_prev = lon_diff1;
- result = result_curr;
- }
- else if (t_cand1 != t_cand2)
- {
- try_t2 = true;
- }
- else
- {
- // the result is not fully correct but it won't be more accurate
- break;
- }
- }
- // ! converge_07_step_one
- else
- {
- if (t_cand1 != t_cand2)
- {
- try_t2 = true;
- }
- else
- {
- return false;
- }
- }
- if (try_t2)
- {
- CT t2 = t;
- CT beta2 = beta;
- // check if the further calculation is needed
- if (converge_07_update(t2, beta2, t_cand2))
- {
- break;
- }
- if (! converge_07_step_one(CT(sin(beta2)), t2, lon1_minus_lon2, geodesics, lon_sph, result_curr))
- {
- return false;
- }
- CT const lon_diff2 = math::longitude_difference<radian>(result_curr.lon1, result_curr.lon2);
- if (lon_diff_prev > lon_diff2)
- {
- t_direction *= -1;
- t = t2;
- beta = beta2;
- lon_diff_prev = lon_diff2;
- result = result_curr;
- }
- else
- {
- // the result is not fully correct but it won't be more accurate
- break;
- }
- }
- }
- lat = geod1.lat(t);
- lon = ! geod1.is_Cj_zero ? result.lon1 : result.lon2;
- math::normalize_longitude<radian>(lon);
- return true;
- }
- static inline bool converge_07_update(CT & t, CT & beta, CT const& t_new)
- {
- CT const c0 = 0;
- CT const beta_new = atan(t_new);
- CT const dbeta = beta_new - beta;
- beta = beta_new;
- t = t_new;
- return math::equals(dbeta, c0);
- }
- static inline CT const& pick_t(CT const& t1, CT const& t2, int direction)
- {
- return direction < 0 ? (std::min)(t1, t2) : (std::max)(t1, t2);
- }
- static inline bool converge_07_step_one(CT const& sin_beta,
- CT const& t,
- CT const& lon1_minus_lon2,
- geodesics_type const& geodesics,
- CT const& lon_sph,
- converge_07_result & result,
- bool check_sin_beta = true)
- {
- bool ok = converge_07_one_geod(sin_beta, t, geodesics.geod1, geodesics.vertex1, lon_sph,
- result.lon1, result.k1_diff, check_sin_beta)
- && converge_07_one_geod(sin_beta, t, geodesics.geod2, geodesics.vertex2, lon_sph,
- result.lon2, result.k2_diff, check_sin_beta);
- if (!ok)
- {
- return false;
- }
- CT const k = lon1_minus_lon2 + result.k1_diff - result.k2_diff;
- // get 2 possible ts one lesser and one greater than t
- // t1 is the closer one
- calc_ts(t, k, geodesics.geod1, geodesics.geod2, result.t1, result.t2);
- return true;
- }
- static inline bool converge_07_one_geod(CT const& sin_beta, CT const& t,
- geodesic_type const& geod,
- typename geodesic_type::vertex_data const& vertex,
- CT const& lon_sph,
- CT & lon, CT & k_diff,
- bool check_sin_beta)
- {
- using math::detail::bounded;
- CT const c1 = 1;
- CT k_diff_before = 0;
- CT k_diff_behind = 0;
- bool is_beta_ok = geod.k_diffs(sin_beta, vertex, k_diff_before, k_diff_behind, check_sin_beta);
- if (! is_beta_ok)
- {
- return false;
- }
- CT const asin_t_t0j = ! geod.is_Cj_zero ? asin(bounded(t / geod.t0j, -c1, c1)) : 0;
- CT const sign_asin_t_t0j = geod.sign_lon_diff * asin_t_t0j;
- CT const lon_before = geod.lonj + sign_asin_t_t0j + k_diff_before;
- CT const lon_behind = geod.lonj - sign_asin_t_t0j + k_diff_behind;
- CT const lon_dist_before = math::longitude_distance_signed<radian>(lon_before, lon_sph);
- CT const lon_dist_behind = math::longitude_distance_signed<radian>(lon_behind, lon_sph);
- if (math::abs(lon_dist_before) <= math::abs(lon_dist_behind))
- {
- k_diff = k_diff_before;
- lon = lon_before;
- }
- else
- {
- k_diff = k_diff_behind;
- lon = lon_behind;
- }
- return true;
- }
- static inline void calc_ts(CT const& t, CT const& k,
- geodesic_type const& geod1, geodesic_type const& geod2,
- CT & t1, CT& t2)
- {
- CT const c0 = 0;
- CT const c1 = 1;
- CT const c2 = 2;
- CT const K = sin(k);
- BOOST_GEOMETRY_ASSERT(!geod1.is_Cj_zero || !geod2.is_Cj_zero);
- if (geod1.is_Cj_zero)
- {
- t1 = K * geod2.t0j;
- t2 = -t1;
- }
- else if (geod2.is_Cj_zero)
- {
- t1 = -K * geod1.t0j;
- t2 = -t1;
- }
- else
- {
- CT const A = math::sqr(geod1.t0j) + math::sqr(geod2.t0j);
- CT const B = c2 * geod1.t0j * geod2.t0j * math::sqrt(c1 - math::sqr(K));
- CT const K_t01_t02 = K * geod1.t0j * geod2.t0j;
- CT const D1 = math::sqrt(A + B);
- CT const D2 = math::sqrt(A - B);
- CT const t_new1 = math::equals(D1, c0) ? c0 : K_t01_t02 / D1;
- CT const t_new2 = math::equals(D2, c0) ? c0 : K_t01_t02 / D2;
- CT const t_new3 = -t_new1;
- CT const t_new4 = -t_new2;
- // Pick 2 nearest t_new, one greater and one lesser than current t
- CT const abs_t_new1 = math::abs(t_new1);
- CT const abs_t_new2 = math::abs(t_new2);
- CT const abs_t_max = (std::max)(abs_t_new1, abs_t_new2);
- t1 = -abs_t_max; // lesser
- t2 = abs_t_max; // greater
- if (t1 < t)
- {
- if (t_new1 < t && t_new1 > t1)
- t1 = t_new1;
- if (t_new2 < t && t_new2 > t1)
- t1 = t_new2;
- if (t_new3 < t && t_new3 > t1)
- t1 = t_new3;
- if (t_new4 < t && t_new4 > t1)
- t1 = t_new4;
- }
- if (t2 > t)
- {
- if (t_new1 > t && t_new1 < t2)
- t2 = t_new1;
- if (t_new2 > t && t_new2 < t2)
- t2 = t_new2;
- if (t_new3 > t && t_new3 < t2)
- t2 = t_new3;
- if (t_new4 > t && t_new4 < t2)
- t2 = t_new4;
- }
- }
- // the first one is the closer one
- if (math::abs(t - t2) < math::abs(t - t1))
- {
- std::swap(t2, t1);
- }
- }
- static inline CT fj(CT const& cos_beta, CT const& cos2_beta, CT const& Cj, CT const& e_sqr)
- {
- CT const c1 = 1;
- CT const Cj_sqr = math::sqr(Cj);
- return Cj / cos_beta * math::sqrt((c1 - e_sqr * cos2_beta) / (cos2_beta - Cj_sqr));
- }
- /*static inline CT vertical_intersection_longitude(CT const& ip_lon, CT const& seg_lon1, CT const& seg_lon2)
- {
- CT const c0 = 0;
- CT const lon_2 = ip_lon > c0 ? ip_lon - pi : ip_lon + pi;
- return (std::min)(math::longitude_difference<radian>(ip_lon, seg_lon1),
- math::longitude_difference<radian>(ip_lon, seg_lon2))
- <=
- (std::min)(math::longitude_difference<radian>(lon_2, seg_lon1),
- math::longitude_difference<radian>(lon_2, seg_lon2))
- ? ip_lon : lon_2;
- }*/
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_SJOBERG_INTERSECTION_HPP
|