123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- // Boost.Geometry
- // Copyright (c) 2016-2021, Oracle and/or its affiliates.
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
- #define BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
- #include <boost/geometry/core/coordinate_system.hpp>
- #include <boost/geometry/core/coordinate_type.hpp>
- #include <boost/geometry/core/access.hpp>
- #include <boost/geometry/core/radian_access.hpp>
- #include <boost/geometry/arithmetic/arithmetic.hpp>
- #include <boost/geometry/arithmetic/cross_product.hpp>
- #include <boost/geometry/arithmetic/dot_product.hpp>
- #include <boost/geometry/arithmetic/normalize.hpp>
- #include <boost/geometry/formulas/eccentricity_sqr.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/unit_spheroid.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/util/select_coordinate_type.hpp>
- namespace boost { namespace geometry {
- namespace formula {
- template <typename Point3d, typename PointGeo, typename Spheroid>
- inline Point3d geo_to_cart3d(PointGeo const& point_geo, Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type calc_t;
- calc_t const c1 = 1;
- calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
- calc_t const lon = get_as_radian<0>(point_geo);
- calc_t const lat = get_as_radian<1>(point_geo);
- Point3d res;
- calc_t const sin_lat = sin(lat);
- // "unit" spheroid, a = 1
- calc_t const N = c1 / math::sqrt(c1 - e_sqr * math::sqr(sin_lat));
- calc_t const N_cos_lat = N * cos(lat);
- set<0>(res, N_cos_lat * cos(lon));
- set<1>(res, N_cos_lat * sin(lon));
- set<2>(res, N * (c1 - e_sqr) * sin_lat);
- return res;
- }
- template <typename PointGeo, typename Spheroid, typename Point3d>
- inline void geo_to_cart3d(PointGeo const& point_geo, Point3d & result, Point3d & north, Point3d & east, Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type calc_t;
- calc_t const c1 = 1;
- calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
- calc_t const lon = get_as_radian<0>(point_geo);
- calc_t const lat = get_as_radian<1>(point_geo);
- calc_t const sin_lon = sin(lon);
- calc_t const cos_lon = cos(lon);
- calc_t const sin_lat = sin(lat);
- calc_t const cos_lat = cos(lat);
- // "unit" spheroid, a = 1
- calc_t const N = c1 / math::sqrt(c1 - e_sqr * math::sqr(sin_lat));
- calc_t const N_cos_lat = N * cos_lat;
- set<0>(result, N_cos_lat * cos_lon);
- set<1>(result, N_cos_lat * sin_lon);
- set<2>(result, N * (c1 - e_sqr) * sin_lat);
- set<0>(east, -sin_lon);
- set<1>(east, cos_lon);
- set<2>(east, 0);
- set<0>(north, -sin_lat * cos_lon);
- set<1>(north, -sin_lat * sin_lon);
- set<2>(north, cos_lat);
- }
- template <typename PointGeo, typename Point3d, typename Spheroid>
- inline PointGeo cart3d_to_geo(Point3d const& point_3d, Spheroid const& spheroid)
- {
- typedef typename coordinate_type<PointGeo>::type coord_t;
- typedef typename coordinate_type<Point3d>::type calc_t;
- calc_t const c1 = 1;
- //calc_t const c2 = 2;
- calc_t const e_sqr = eccentricity_sqr<calc_t>(spheroid);
- calc_t const x = get<0>(point_3d);
- calc_t const y = get<1>(point_3d);
- calc_t const z = get<2>(point_3d);
- calc_t const xy_l = math::sqrt(math::sqr(x) + math::sqr(y));
- calc_t const lonr = atan2(y, x);
- // NOTE: Alternative version
- // http://www.iag-aig.org/attach/989c8e501d9c5b5e2736955baf2632f5/V60N2_5FT.pdf
- // calc_t const lonr = c2 * atan2(y, x + xy_l);
- calc_t const latr = atan2(z, (c1 - e_sqr) * xy_l);
- // NOTE: If h is equal to 0 then there is no need to improve value of latitude
- // because then N_i / (N_i + h_i) = 1
- // http://www.navipedia.net/index.php/Ellipsoidal_and_Cartesian_Coordinates_Conversion
- PointGeo res;
- set_from_radian<0>(res, lonr);
- set_from_radian<1>(res, latr);
- coord_t lon = get<0>(res);
- coord_t lat = get<1>(res);
- math::normalize_spheroidal_coordinates
- <
- typename coordinate_system<PointGeo>::type::units,
- coord_t
- >(lon, lat);
- set<0>(res, lon);
- set<1>(res, lat);
- return res;
- }
- template <typename Point3d, typename Spheroid>
- inline Point3d projected_to_xy(Point3d const& point_3d, Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- // len_xy = sqrt(x^2 + y^2)
- // r = len_xy - |z / tan(lat)|
- // assuming h = 0
- // lat = atan2(z, (1 - e^2) * len_xy);
- // |z / tan(lat)| = (1 - e^2) * len_xy
- // r = e^2 * len_xy
- // x_res = r * cos(lon) = e^2 * len_xy * x / len_xy = e^2 * x
- // y_res = r * sin(lon) = e^2 * len_xy * y / len_xy = e^2 * y
- coord_t const c0 = 0;
- coord_t const e_sqr = formula::eccentricity_sqr<coord_t>(spheroid);
- Point3d res;
- set<0>(res, e_sqr * get<0>(point_3d));
- set<1>(res, e_sqr * get<1>(point_3d));
- set<2>(res, c0);
- return res;
- }
- template <typename Point3d, typename Spheroid>
- inline Point3d projected_to_surface(Point3d const& direction, Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- //coord_t const c0 = 0;
- coord_t const c2 = 2;
- coord_t const c4 = 4;
- // calculate the point of intersection of a ray and spheroid's surface
- // the origin is the origin of the coordinate system
- //(x*x+y*y)/(a*a) + z*z/(b*b) = 1
- // x = d.x * t
- // y = d.y * t
- // z = d.z * t
- coord_t const dx = get<0>(direction);
- coord_t const dy = get<1>(direction);
- coord_t const dz = get<2>(direction);
- //coord_t const a_sqr = math::sqr(get_radius<0>(spheroid));
- //coord_t const b_sqr = math::sqr(get_radius<2>(spheroid));
- // "unit" spheroid, a = 1
- coord_t const a_sqr = 1;
- coord_t const b_sqr = math::sqr(formula::unit_spheroid_b<coord_t>(spheroid));
- coord_t const param_a = (dx*dx + dy*dy) / a_sqr + dz*dz / b_sqr;
- coord_t const delta = c4 * param_a;
- // delta >= 0
- coord_t const t = math::sqrt(delta) / (c2 * param_a);
- // result = direction * t
- Point3d result = direction;
- multiply_value(result, t);
- return result;
- }
- template <typename Point3d, typename Spheroid>
- inline bool projected_to_surface(Point3d const& origin, Point3d const& direction,
- Point3d & result1, Point3d & result2,
- Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- coord_t const c0 = 0;
- coord_t const c1 = 1;
- coord_t const c2 = 2;
- coord_t const c4 = 4;
- // calculate the point of intersection of a ray and spheroid's surface
- //(x*x+y*y)/(a*a) + z*z/(b*b) = 1
- // x = o.x + d.x * t
- // y = o.y + d.y * t
- // z = o.z + d.z * t
- coord_t const ox = get<0>(origin);
- coord_t const oy = get<1>(origin);
- coord_t const oz = get<2>(origin);
- coord_t const dx = get<0>(direction);
- coord_t const dy = get<1>(direction);
- coord_t const dz = get<2>(direction);
- //coord_t const a_sqr = math::sqr(get_radius<0>(spheroid));
- //coord_t const b_sqr = math::sqr(get_radius<2>(spheroid));
- // "unit" spheroid, a = 1
- coord_t const a_sqr = 1;
- coord_t const b_sqr = math::sqr(formula::unit_spheroid_b<coord_t>(spheroid));
- coord_t const param_a = (dx*dx + dy*dy) / a_sqr + dz*dz / b_sqr;
- coord_t const param_b = c2 * ((ox*dx + oy*dy) / a_sqr + oz*dz / b_sqr);
- coord_t const param_c = (ox*ox + oy*oy) / a_sqr + oz*oz / b_sqr - c1;
- coord_t const delta = math::sqr(param_b) - c4 * param_a*param_c;
- // equals() ?
- if (delta < c0 || param_a == 0)
- {
- return false;
- }
- // result = origin + direction * t
- coord_t const sqrt_delta = math::sqrt(delta);
- coord_t const two_a = c2 * param_a;
- coord_t const t1 = (-param_b + sqrt_delta) / two_a;
- coord_t const t2 = (-param_b - sqrt_delta) / two_a;
- geometry::detail::for_each_dimension<Point3d>([&](auto index)
- {
- set<index>(result1, get<index>(origin) + get<index>(direction) * t1);
- set<index>(result2, get<index>(origin) + get<index>(direction) * t2);
- });
- return true;
- }
- template <typename Point3d, typename Spheroid>
- inline bool great_elliptic_intersection(Point3d const& a1, Point3d const& a2,
- Point3d const& b1, Point3d const& b2,
- Point3d & result,
- Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- coord_t c0 = 0;
- coord_t c1 = 1;
- Point3d n1 = cross_product(a1, a2);
- Point3d n2 = cross_product(b1, b2);
- // intersection direction
- Point3d id = cross_product(n1, n2);
- coord_t id_len_sqr = dot_product(id, id);
- if (math::equals(id_len_sqr, c0))
- {
- return false;
- }
- // no need to normalize a1 and a2 because the intersection point on
- // the opposite side of the globe is at the same distance from the origin
- coord_t cos_a1i = dot_product(a1, id);
- coord_t cos_a2i = dot_product(a2, id);
- coord_t gri = math::detail::greatest(cos_a1i, cos_a2i);
- Point3d neg_id = id;
- multiply_value(neg_id, -c1);
- coord_t cos_a1ni = dot_product(a1, neg_id);
- coord_t cos_a2ni = dot_product(a2, neg_id);
- coord_t grni = math::detail::greatest(cos_a1ni, cos_a2ni);
- if (gri >= grni)
- {
- result = projected_to_surface(id, spheroid);
- }
- else
- {
- result = projected_to_surface(neg_id, spheroid);
- }
- return true;
- }
- template <typename Point3d1, typename Point3d2>
- static inline int elliptic_side_value(Point3d1 const& origin, Point3d1 const& norm, Point3d2 const& pt)
- {
- typedef typename coordinate_type<Point3d1>::type calc_t;
- calc_t c0 = 0;
- // vector oposite to pt - origin
- // only for the purpose of assigning origin
- Point3d1 vec = origin;
- subtract_point(vec, pt);
- calc_t d = dot_product(norm, vec);
- // since the vector is opposite the signs are opposite
- return math::equals(d, c0) ? 0
- : d < c0 ? 1
- : -1; // d > 0
- }
- template <typename Point3d, typename Spheroid>
- inline bool planes_spheroid_intersection(Point3d const& o1, Point3d const& n1,
- Point3d const& o2, Point3d const& n2,
- Point3d & ip1, Point3d & ip2,
- Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- coord_t c0 = 0;
- coord_t c1 = 1;
- // Below
- // n . (p - o) = 0
- // n . p - n . o = 0
- // n . p + d = 0
- // n . p = h
- // intersection direction
- Point3d id = cross_product(n1, n2);
- if (math::equals(dot_product(id, id), c0))
- {
- return false;
- }
- coord_t dot_n1_n2 = dot_product(n1, n2);
- coord_t dot_n1_n2_sqr = math::sqr(dot_n1_n2);
- coord_t h1 = dot_product(n1, o1);
- coord_t h2 = dot_product(n2, o2);
- coord_t denom = c1 - dot_n1_n2_sqr;
- coord_t C1 = (h1 - h2 * dot_n1_n2) / denom;
- coord_t C2 = (h2 - h1 * dot_n1_n2) / denom;
- // C1 * n1 + C2 * n2
- Point3d io;
- geometry::detail::for_each_dimension<Point3d>([&](auto index)
- {
- set<index>(io, C1 * get<index>(n1) + C2 * get<index>(n2));
- });
- if (! projected_to_surface(io, id, ip1, ip2, spheroid))
- {
- return false;
- }
- return true;
- }
- template <typename Point3d, typename Spheroid>
- inline void experimental_elliptic_plane(Point3d const& p1, Point3d const& p2,
- Point3d & v1, Point3d & v2,
- Point3d & origin, Point3d & normal,
- Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- Point3d xy1 = projected_to_xy(p1, spheroid);
- Point3d xy2 = projected_to_xy(p2, spheroid);
- // origin = (xy1 + xy2) / 2
- // v1 = p1 - origin
- // v2 = p2 - origin
- coord_t const half = coord_t(0.5);
- geometry::detail::for_each_dimension<Point3d>([&](auto index)
- {
- coord_t const o = (get<index>(xy1) + get<index>(xy2)) * half;
- set<index>(origin, o);
- set<index>(v1, get<index>(p1) - o);
- set<index>(v2, get<index>(p1) - o);
- });
- normal = cross_product(v1, v2);
- }
- template <typename Point3d, typename Spheroid>
- inline void experimental_elliptic_plane(Point3d const& p1, Point3d const& p2,
- Point3d & origin, Point3d & normal,
- Spheroid const& spheroid)
- {
- Point3d v1, v2;
- experimental_elliptic_plane(p1, p2, v1, v2, origin, normal, spheroid);
- }
- template <typename Point3d, typename Spheroid>
- inline bool experimental_elliptic_intersection(Point3d const& a1, Point3d const& a2,
- Point3d const& b1, Point3d const& b2,
- Point3d & result,
- Spheroid const& spheroid)
- {
- typedef typename coordinate_type<Point3d>::type coord_t;
- coord_t c0 = 0;
- coord_t c1 = 1;
- Point3d a1v, a2v, o1, n1;
- experimental_elliptic_plane(a1, a2, a1v, a2v, o1, n1, spheroid);
- Point3d b1v, b2v, o2, n2;
- experimental_elliptic_plane(b1, b2, b1v, b2v, o2, n2, spheroid);
- if (! geometry::detail::vec_normalize(n1) || ! geometry::detail::vec_normalize(n2))
- {
- return false;
- }
- Point3d ip1_s, ip2_s;
- if (! planes_spheroid_intersection(o1, n1, o2, n2, ip1_s, ip2_s, spheroid))
- {
- return false;
- }
- // NOTE: simplified test, may not work in all cases
- coord_t dot_a1i1 = dot_product(a1, ip1_s);
- coord_t dot_a2i1 = dot_product(a2, ip1_s);
- coord_t gri1 = math::detail::greatest(dot_a1i1, dot_a2i1);
- coord_t dot_a1i2 = dot_product(a1, ip2_s);
- coord_t dot_a2i2 = dot_product(a2, ip2_s);
- coord_t gri2 = math::detail::greatest(dot_a1i2, dot_a2i2);
- result = gri1 >= gri2 ? ip1_s : ip2_s;
- return true;
- }
- } // namespace formula
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_FORMULAS_GEOGRAPHIC_HPP
|