123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- // Boost.Geometry (aka GGL, Generic Geometry Library)
- // Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
- // Copyright (c) 2008-2012 Barend Gehrels, Amsterdam, the Netherlands.
- // Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
- // This file was modified by Oracle on 2016-2020.
- // Modifications copyright (c) 2016-2020, Oracle and/or its affiliates.
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
- #define BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
- #include <cstddef>
- #include <type_traits>
- #include <boost/geometry/core/access.hpp>
- #include <boost/geometry/core/make.hpp>
- #include <boost/geometry/core/coordinate_dimension.hpp>
- #include <boost/geometry/core/static_assert.hpp>
- #include <boost/geometry/geometries/concepts/point_concept.hpp>
- namespace boost { namespace geometry
- {
- #ifndef DOXYGEN_NO_DETAIL
- namespace detail
- {
- template <std::size_t Dimension>
- struct cross_product
- {
- // We define cross product only for 2d (see Wolfram) and 3d.
- // In Math, it is also well-defined for 7-dimension.
- // Generalisation of cross product to n-dimension is defined as
- // wedge product but it is not direct analogue to binary cross product.
- BOOST_GEOMETRY_STATIC_ASSERT_FALSE(
- "Not implemented for this Dimension.",
- std::integral_constant<std::size_t, Dimension>);
- };
- template <>
- struct cross_product<2>
- {
- template <typename P1, typename P2, typename ResultP>
- static void apply(P1 const& p1, P2 const& p2, ResultP& result)
- {
- assert_dimension<P1, 2>();
- assert_dimension<P2, 2>();
- assert_dimension<ResultP, 2>();
- // For 2-dimensions, analog of the cross product U(x,y) and V(x,y) is
- // Ux * Vy - Uy * Vx
- // which is returned as 0-component (or X) of 2d vector, 1-component is undefined.
- set<0>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
- }
- };
- template <>
- struct cross_product<3>
- {
- template <typename P1, typename P2, typename ResultP>
- static void apply(P1 const& p1, P2 const& p2, ResultP& result)
- {
- assert_dimension<P1, 3>();
- assert_dimension<P2, 3>();
- assert_dimension<ResultP, 3>();
- set<0>(result, get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2));
- set<1>(result, get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2));
- set<2>(result, get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
- }
- template <typename ResultP, typename P1, typename P2>
- static constexpr ResultP apply(P1 const& p1, P2 const& p2)
- {
- assert_dimension<P1, 3>();
- assert_dimension<P2, 3>();
- assert_dimension<ResultP, 3>();
- return traits::make<ResultP>::apply(
- get<1>(p1) * get<2>(p2) - get<2>(p1) * get<1>(p2),
- get<2>(p1) * get<0>(p2) - get<0>(p1) * get<2>(p2),
- get<0>(p1) * get<1>(p2) - get<1>(p1) * get<0>(p2));
- }
- };
- } // namespace detail
- #endif // DOXYGEN_NO_DETAIL
- /*!
- \brief Computes the cross product of two vectors.
- \details All vectors should have the same dimension, 3 or 2.
- \ingroup arithmetic
- \param p1 first vector
- \param p2 second vector
- \return the cross product vector
- */
- template
- <
- typename ResultP, typename P1, typename P2,
- std::enable_if_t
- <
- dimension<ResultP>::value != 3
- || ! traits::make<ResultP>::is_specialized,
- int
- > = 0
- >
- inline ResultP cross_product(P1 const& p1, P2 const& p2)
- {
- BOOST_CONCEPT_ASSERT( (concepts::Point<ResultP>) );
- BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P1>) );
- BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<P2>) );
- ResultP result;
- detail::cross_product<dimension<ResultP>::value>::apply(p1, p2, result);
- return result;
- }
- template
- <
- typename ResultP, typename P1, typename P2,
- std::enable_if_t
- <
- dimension<ResultP>::value == 3
- && traits::make<ResultP>::is_specialized,
- int
- > = 0
- >
- // workaround for VS2015
- #if !defined(_MSC_VER) || (_MSC_VER >= 1910)
- constexpr
- #endif
- inline ResultP cross_product(P1 const& p1, P2 const& p2)
- {
- BOOST_CONCEPT_ASSERT((concepts::Point<ResultP>));
- BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P1>));
- BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P2>));
- return detail::cross_product<3>::apply<ResultP>(p1, p2);
- }
- /*!
- \brief Computes the cross product of two vectors.
- \details All vectors should have the same dimension, 3 or 2.
- \ingroup arithmetic
- \param p1 first vector
- \param p2 second vector
- \return the cross product vector
- \qbk{[heading Examples]}
- \qbk{[cross_product] [cross_product_output]}
- */
- template
- <
- typename P,
- std::enable_if_t
- <
- dimension<P>::value != 3
- || ! traits::make<P>::is_specialized,
- int
- > = 0
- >
- inline P cross_product(P const& p1, P const& p2)
- {
- BOOST_CONCEPT_ASSERT((concepts::Point<P>));
- BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
- P result;
- detail::cross_product<dimension<P>::value>::apply(p1, p2, result);
- return result;
- }
- template
- <
- typename P,
- std::enable_if_t
- <
- dimension<P>::value == 3
- && traits::make<P>::is_specialized,
- int
- > = 0
- >
- // workaround for VS2015
- #if !defined(_MSC_VER) || (_MSC_VER >= 1910)
- constexpr
- #endif
- inline P cross_product(P const& p1, P const& p2)
- {
- BOOST_CONCEPT_ASSERT((concepts::Point<P>));
- BOOST_CONCEPT_ASSERT((concepts::ConstPoint<P>));
- return detail::cross_product<3>::apply<P>(p1, p2);
- }
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_ARITHMETIC_CROSS_PRODUCT_HPP
|