123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- // Copyright 2020-2023 Daniel Lemire
- // Copyright 2023 Matt Borland
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- //
- // Derivative of: https://github.com/fastfloat/fast_float
- #ifndef BOOST_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
- #define BOOST_CHARCONV_DETAIL_FASTFLOAT_DIGIT_COMPARISON_HPP
- #include <boost/charconv/detail/fast_float/float_common.hpp>
- #include <boost/charconv/detail/fast_float/bigint.hpp>
- #include <boost/charconv/detail/fast_float/ascii_number.hpp>
- #include <algorithm>
- #include <cstdint>
- #include <cstring>
- #include <iterator>
- namespace boost { namespace charconv { namespace detail { namespace fast_float {
- // 1e0 to 1e19
- constexpr static uint64_t powers_of_ten_uint64[] = {
- 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
- 1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
- 100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
- 1000000000000000000UL, 10000000000000000000UL};
- // calculate the exponent, in scientific notation, of the number.
- // this algorithm is not even close to optimized, but it has no practical
- // effect on performance: in order to have a faster algorithm, we'd need
- // to slow down performance for faster algorithms, and this is still fast.
- template <typename UC>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- int32_t scientific_exponent(parsed_number_string_t<UC> & num) noexcept {
- uint64_t mantissa = num.mantissa;
- int32_t exponent = int32_t(num.exponent);
- while (mantissa >= 10000) {
- mantissa /= 10000;
- exponent += 4;
- }
- while (mantissa >= 100) {
- mantissa /= 100;
- exponent += 2;
- }
- while (mantissa >= 10) {
- mantissa /= 10;
- exponent += 1;
- }
- return exponent;
- }
- // this converts a native floating-point number to an extended-precision float.
- template <typename T>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa to_extended(T value) noexcept {
- using equiv_uint = typename binary_format<T>::equiv_uint;
- constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
- constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
- constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
- adjusted_mantissa am;
- int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
- equiv_uint bits;
- #if BOOST_CHARCONV_FASTFLOAT_HAS_BIT_CAST
- bits = std::bit_cast<equiv_uint>(value);
- #else
- ::memcpy(&bits, &value, sizeof(T));
- #endif
- if ((bits & exponent_mask) == 0) {
- // denormal
- am.power2 = 1 - bias;
- am.mantissa = bits & mantissa_mask;
- } else {
- // normal
- am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
- am.power2 -= bias;
- am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
- }
- return am;
- }
- // get the extended precision value of the halfway point between b and b+u.
- // we are given a native float that represents b, so we need to adjust it
- // halfway between b and b+u.
- template <typename T>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa to_extended_halfway(T value) noexcept {
- adjusted_mantissa am = to_extended(value);
- am.mantissa <<= 1;
- am.mantissa += 1;
- am.power2 -= 1;
- return am;
- }
- // round an extended-precision float to the nearest machine float.
- template <typename T, typename callback>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- void round(adjusted_mantissa& am, callback cb) noexcept {
- int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
- if (-am.power2 >= mantissa_shift) {
- // have a denormal float
- int32_t shift = -am.power2 + 1;
- cb(am, std::min<int32_t>(shift, 64));
- // check for round-up: if rounding-nearest carried us to the hidden bit.
- am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
- return;
- }
- // have a normal float, use the default shift.
- cb(am, mantissa_shift);
- // check for carry
- if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
- am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
- am.power2++;
- }
- // check for infinite: we could have carried to an infinite power
- am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
- if (am.power2 >= binary_format<T>::infinite_power()) {
- am.power2 = binary_format<T>::infinite_power();
- am.mantissa = 0;
- }
- }
- template <typename callback>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
- const uint64_t mask
- = (shift == 64)
- ? UINT64_MAX
- : (uint64_t(1) << shift) - 1;
- const uint64_t halfway
- = (shift == 0)
- ? 0
- : uint64_t(1) << (shift - 1);
- uint64_t truncated_bits = am.mantissa & mask;
- bool is_above = truncated_bits > halfway;
- bool is_halfway = truncated_bits == halfway;
- // shift digits into position
- if (shift == 64) {
- am.mantissa = 0;
- } else {
- am.mantissa >>= shift;
- }
- am.power2 += shift;
- bool is_odd = (am.mantissa & 1) == 1;
- am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
- if (shift == 64) {
- am.mantissa = 0;
- } else {
- am.mantissa >>= shift;
- }
- am.power2 += shift;
- }
- template <typename UC>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void skip_zeros(UC const * & first, UC const * last) noexcept {
- uint64_t val;
- while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
- ::memcpy(&val, first, sizeof(uint64_t));
- if (val != int_cmp_zeros<UC>()) {
- break;
- }
- first += int_cmp_len<UC>();
- }
- while (first != last) {
- if (*first != UC('0')) {
- break;
- }
- first++;
- }
- }
- // determine if any non-zero digits were truncated.
- // all characters must be valid digits.
- template <typename UC>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- bool is_truncated(UC const * first, UC const * last) noexcept {
- // do 8-bit optimizations, can just compare to 8 literal 0s.
- uint64_t val;
- while (!cpp20_and_in_constexpr() && std::distance(first, last) >= int_cmp_len<UC>()) {
- ::memcpy(&val, first, sizeof(uint64_t));
- if (val != int_cmp_zeros<UC>()) {
- return true;
- }
- first += int_cmp_len<UC>();
- }
- while (first != last) {
- if (*first != UC('0')) {
- return true;
- }
- ++first;
- }
- return false;
- }
- template <typename UC>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- bool is_truncated(span<const UC> s) noexcept {
- return is_truncated(s.ptr, s.ptr + s.len());
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void parse_eight_digits(const char16_t*& , limb& , size_t& , size_t& ) noexcept {
- // currently unused
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void parse_eight_digits(const char32_t*& , limb& , size_t& , size_t& ) noexcept {
- // currently unused
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
- value = value * 100000000 + parse_eight_digits_unrolled(p);
- p += 8;
- counter += 8;
- count += 8;
- }
- template <typename UC>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- void parse_one_digit(UC const *& p, limb& value, size_t& counter, size_t& count) noexcept {
- value = value * 10 + limb(*p - UC('0'));
- p++;
- counter++;
- count++;
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void add_native(bigint& big, limb power, limb value) noexcept {
- big.mul(power);
- big.add(value);
- }
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void round_up_bigint(bigint& big, size_t& count) noexcept {
- // need to round-up the digits, but need to avoid rounding
- // ....9999 to ...10000, which could cause a false halfway point.
- add_native(big, 10, 1);
- count++;
- }
- // parse the significant digits into a big integer
- template <typename UC>
- inline BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- void parse_mantissa(bigint& result, parsed_number_string_t<UC>& num, size_t max_digits, size_t& digits) noexcept {
- // try to minimize the number of big integer and scalar multiplication.
- // therefore, try to parse 8 digits at a time, and multiply by the largest
- // scalar value (9 or 19 digits) for each step.
- size_t counter = 0;
- digits = 0;
- limb value = 0;
- #ifdef BOOST_CHARCONV_FASTFLOAT_64BIT_LIMB
- constexpr size_t step = 19;
- #else
- constexpr size_t step = 9;
- #endif
- // process all integer digits.
- UC const * p = num.integer.ptr;
- UC const * pend = p + num.integer.len();
- skip_zeros(p, pend);
- // process all digits, in increments of step per loop
- while (p != pend) {
- if (std::is_same<UC,char>::value) {
- while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
- parse_eight_digits(p, value, counter, digits);
- }
- }
- while (counter < step && p != pend && digits < max_digits) {
- parse_one_digit(p, value, counter, digits);
- }
- if (digits == max_digits) {
- // add the temporary value, then check if we've truncated any digits
- add_native(result, limb(powers_of_ten_uint64[counter]), value);
- bool truncated = is_truncated(p, pend);
- if (num.fraction.ptr != nullptr) {
- truncated |= is_truncated(num.fraction);
- }
- if (truncated) {
- round_up_bigint(result, digits);
- }
- return;
- } else {
- add_native(result, limb(powers_of_ten_uint64[counter]), value);
- counter = 0;
- value = 0;
- }
- }
- // add our fraction digits, if they're available.
- if (num.fraction.ptr != nullptr) {
- p = num.fraction.ptr;
- pend = p + num.fraction.len();
- if (digits == 0) {
- skip_zeros(p, pend);
- }
- // process all digits, in increments of step per loop
- while (p != pend) {
- if (std::is_same<UC,char>::value) {
- while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
- parse_eight_digits(p, value, counter, digits);
- }
- }
- while (counter < step && p != pend && digits < max_digits) {
- parse_one_digit(p, value, counter, digits);
- }
- if (digits == max_digits) {
- // add the temporary value, then check if we've truncated any digits
- add_native(result, limb(powers_of_ten_uint64[counter]), value);
- bool truncated = is_truncated(p, pend);
- if (truncated) {
- round_up_bigint(result, digits);
- }
- return;
- } else {
- add_native(result, limb(powers_of_ten_uint64[counter]), value);
- counter = 0;
- value = 0;
- }
- }
- }
- if (counter != 0) {
- add_native(result, limb(powers_of_ten_uint64[counter]), value);
- }
- }
- template <typename T>
- inline BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
- BOOST_CHARCONV_FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
- adjusted_mantissa answer;
- bool truncated;
- answer.mantissa = bigmant.hi64(truncated);
- int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
- answer.power2 = bigmant.bit_length() - 64 + bias;
- round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
- round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
- return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
- });
- });
- return answer;
- }
- // the scaling here is quite simple: we have, for the real digits `m * 10^e`,
- // and for the theoretical digits `n * 2^f`. Since `e` is always negative,
- // to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
- // we then need to scale by `2^(f- e)`, and then the two significant digits
- // are of the same magnitude.
- template <typename T>
- inline BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
- bigint& real_digits = bigmant;
- int32_t real_exp = exponent;
- // get the value of `b`, rounded down, and get a bigint representation of b+h
- adjusted_mantissa am_b = am;
- // gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
- round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
- T b;
- to_float(false, am_b, b);
- adjusted_mantissa theor = to_extended_halfway(b);
- bigint theor_digits(theor.mantissa);
- int32_t theor_exp = theor.power2;
- // scale real digits and theor digits to be same power.
- int32_t pow2_exp = theor_exp - real_exp;
- uint32_t pow5_exp = uint32_t(-real_exp);
- if (pow5_exp != 0) {
- BOOST_CHARCONV_FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
- }
- if (pow2_exp > 0) {
- BOOST_CHARCONV_FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
- } else if (pow2_exp < 0) {
- BOOST_CHARCONV_FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
- }
- // compare digits, and use it to director rounding
- int ord = real_digits.compare(theor_digits);
- adjusted_mantissa answer = am;
- round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
- round_nearest_tie_even(a, shift, [ord](bool is_odd, bool, bool) -> bool {
- if (ord > 0) {
- return true;
- } else if (ord < 0) {
- return false;
- } else {
- return is_odd;
- }
- });
- });
- return answer;
- }
- // parse the significant digits as a big integer to unambiguously round
- // the significant digits. here, we are trying to determine how to round
- // an extended float representation close to `b+h`, halfway between `b`
- // (the float rounded-down) and `b+u`, the next positive float. this
- // algorithm is always correct, and uses one of two approaches. when
- // the exponent is positive relative to the significant digits (such as
- // 1234), we create a big-integer representation, get the high 64-bits,
- // determine if any lower bits are truncated, and use that to direct
- // rounding. in case of a negative exponent relative to the significant
- // digits (such as 1.2345), we create a theoretical representation of
- // `b` as a big-integer type, scaled to the same binary exponent as
- // the actual digits. we then compare the big integer representations
- // of both, and use that to direct rounding.
- template <typename T, typename UC>
- inline BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa digit_comp(parsed_number_string_t<UC>& num, adjusted_mantissa am) noexcept {
- // remove the invalid exponent bias
- am.power2 -= invalid_am_bias;
- int32_t sci_exp = scientific_exponent(num);
- size_t max_digits = binary_format<T>::max_digits();
- size_t digits = 0;
- bigint bigmant;
- parse_mantissa(bigmant, num, max_digits, digits);
- // can't underflow, since digits is at most max_digits.
- int32_t exponent = sci_exp + 1 - int32_t(digits);
- if (exponent >= 0) {
- return positive_digit_comp<T>(bigmant, exponent);
- } else {
- return negative_digit_comp<T>(bigmant, am, exponent);
- }
- }
- }}}} // namespace fast_float
- #endif
|