123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- ///////////////////////////////////////////////////////////////////////////////
- // weighted_p_square_quantile.hpp
- //
- // Copyright 2005 Daniel Egloff. Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
- #define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_P_SQUARE_QUANTILE_HPP_DE_01_01_2006
- #include <cmath>
- #include <functional>
- #include <boost/array.hpp>
- #include <boost/parameter/keyword.hpp>
- #include <boost/mpl/placeholders.hpp>
- #include <boost/type_traits/is_same.hpp>
- #include <boost/accumulators/framework/accumulator_base.hpp>
- #include <boost/accumulators/framework/extractor.hpp>
- #include <boost/accumulators/numeric/functional.hpp>
- #include <boost/accumulators/framework/parameters/sample.hpp>
- #include <boost/accumulators/statistics_fwd.hpp>
- #include <boost/accumulators/statistics/count.hpp>
- #include <boost/accumulators/statistics/sum.hpp>
- #include <boost/accumulators/statistics/parameters/quantile_probability.hpp>
- namespace boost { namespace accumulators
- {
- namespace impl {
- ///////////////////////////////////////////////////////////////////////////////
- // weighted_p_square_quantile_impl
- // single quantile estimation with weighted samples
- /**
- @brief Single quantile estimation with the \f$P^2\f$ algorithm for weighted samples
- This version of the \f$P^2\f$ algorithm extends the \f$P^2\f$ algorithm to support weighted samples.
- The \f$P^2\f$ algorithm estimates a quantile dynamically without storing samples. Instead of
- storing the whole sample cumulative distribution, only five points (markers) are stored. The heights
- of these markers are the minimum and the maximum of the samples and the current estimates of the
- \f$(p/2)\f$-, \f$p\f$ - and \f$(1+p)/2\f$ -quantiles. Their positions are equal to the number
- of samples that are smaller or equal to the markers. Each time a new sample is added, the
- positions of the markers are updated and if necessary their heights are adjusted using a piecewise-
- parabolic formula.
- For further details, see
- R. Jain and I. Chlamtac, The P^2 algorithm for dynamic calculation of quantiles and
- histograms without storing observations, Communications of the ACM,
- Volume 28 (October), Number 10, 1985, p. 1076-1085.
- @param quantile_probability
- */
- template<typename Sample, typename Weight, typename Impl>
- struct weighted_p_square_quantile_impl
- : accumulator_base
- {
- typedef typename numeric::functional::multiplies<Sample, Weight>::result_type weighted_sample;
- typedef typename numeric::functional::fdiv<weighted_sample, std::size_t>::result_type float_type;
- typedef array<float_type, 5> array_type;
- // for boost::result_of
- typedef float_type result_type;
- template<typename Args>
- weighted_p_square_quantile_impl(Args const &args)
- : p(is_same<Impl, for_median>::value ? 0.5 : args[quantile_probability | 0.5])
- , heights()
- , actual_positions()
- , desired_positions()
- {
- }
- template<typename Args>
- void operator ()(Args const &args)
- {
- std::size_t cnt = count(args);
- // accumulate 5 first samples
- if (cnt <= 5)
- {
- this->heights[cnt - 1] = args[sample];
- // In this initialization phase, actual_positions stores the weights of the
- // initial samples that are needed at the end of the initialization phase to
- // compute the correct initial positions of the markers.
- this->actual_positions[cnt - 1] = args[weight];
- // complete the initialization of heights and actual_positions by sorting
- if (cnt == 5)
- {
- // TODO: we need to sort the initial samples (in heights) in ascending order and
- // sort their weights (in actual_positions) the same way. The following lines do
- // it, but there must be a better and more efficient way of doing this.
- typename array_type::iterator it_begin, it_end, it_min;
- it_begin = this->heights.begin();
- it_end = this->heights.end();
- std::size_t pos = 0;
- while (it_begin != it_end)
- {
- it_min = std::min_element(it_begin, it_end);
- std::size_t d = std::distance(it_begin, it_min);
- std::swap(*it_begin, *it_min);
- std::swap(this->actual_positions[pos], this->actual_positions[pos + d]);
- ++it_begin;
- ++pos;
- }
- // calculate correct initial actual positions
- for (std::size_t i = 1; i < 5; ++i)
- {
- this->actual_positions[i] += this->actual_positions[i - 1];
- }
- }
- }
- else
- {
- std::size_t sample_cell = 1; // k
- // find cell k such that heights[k-1] <= args[sample] < heights[k] and adjust extreme values
- if (args[sample] < this->heights[0])
- {
- this->heights[0] = args[sample];
- this->actual_positions[0] = args[weight];
- sample_cell = 1;
- }
- else if (this->heights[4] <= args[sample])
- {
- this->heights[4] = args[sample];
- sample_cell = 4;
- }
- else
- {
- typedef typename array_type::iterator iterator;
- iterator it = std::upper_bound(
- this->heights.begin()
- , this->heights.end()
- , args[sample]
- );
- sample_cell = std::distance(this->heights.begin(), it);
- }
- // increment positions of markers above sample_cell
- for (std::size_t i = sample_cell; i < 5; ++i)
- {
- this->actual_positions[i] += args[weight];
- }
- // update desired positions for all markers
- this->desired_positions[0] = this->actual_positions[0];
- this->desired_positions[1] = (sum_of_weights(args) - this->actual_positions[0])
- * this->p/2. + this->actual_positions[0];
- this->desired_positions[2] = (sum_of_weights(args) - this->actual_positions[0])
- * this->p + this->actual_positions[0];
- this->desired_positions[3] = (sum_of_weights(args) - this->actual_positions[0])
- * (1. + this->p)/2. + this->actual_positions[0];
- this->desired_positions[4] = sum_of_weights(args);
- // adjust height and actual positions of markers 1 to 3 if necessary
- for (std::size_t i = 1; i <= 3; ++i)
- {
- // offset to desired positions
- float_type d = this->desired_positions[i] - this->actual_positions[i];
- // offset to next position
- float_type dp = this->actual_positions[i + 1] - this->actual_positions[i];
- // offset to previous position
- float_type dm = this->actual_positions[i - 1] - this->actual_positions[i];
- // height ds
- float_type hp = (this->heights[i + 1] - this->heights[i]) / dp;
- float_type hm = (this->heights[i - 1] - this->heights[i]) / dm;
- if ( ( d >= 1. && dp > 1. ) || ( d <= -1. && dm < -1. ) )
- {
- short sign_d = static_cast<short>(d / std::abs(d));
- // try adjusting heights[i] using p-squared formula
- float_type h = this->heights[i] + sign_d / (dp - dm) * ( (sign_d - dm) * hp + (dp - sign_d) * hm );
- if ( this->heights[i - 1] < h && h < this->heights[i + 1] )
- {
- this->heights[i] = h;
- }
- else
- {
- // use linear formula
- if (d>0)
- {
- this->heights[i] += hp;
- }
- if (d<0)
- {
- this->heights[i] -= hm;
- }
- }
- this->actual_positions[i] += sign_d;
- }
- }
- }
- }
- result_type result(dont_care) const
- {
- return this->heights[2];
- }
- // make this accumulator serializeable
- // TODO split to save/load and check on parameters provided in ctor
- template<class Archive>
- void serialize(Archive & ar, const unsigned int file_version)
- {
- ar & p;
- ar & heights;
- ar & actual_positions;
- ar & desired_positions;
- }
- private:
- float_type p; // the quantile probability p
- array_type heights; // q_i
- array_type actual_positions; // n_i
- array_type desired_positions; // n'_i
- };
- } // namespace impl
- ///////////////////////////////////////////////////////////////////////////////
- // tag::weighted_p_square_quantile
- //
- namespace tag
- {
- struct weighted_p_square_quantile
- : depends_on<count, sum_of_weights>
- {
- typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, regular> impl;
- };
- struct weighted_p_square_quantile_for_median
- : depends_on<count, sum_of_weights>
- {
- typedef accumulators::impl::weighted_p_square_quantile_impl<mpl::_1, mpl::_2, for_median> impl;
- };
- }
- ///////////////////////////////////////////////////////////////////////////////
- // extract::weighted_p_square_quantile
- // extract::weighted_p_square_quantile_for_median
- //
- namespace extract
- {
- extractor<tag::weighted_p_square_quantile> const weighted_p_square_quantile = {};
- extractor<tag::weighted_p_square_quantile_for_median> const weighted_p_square_quantile_for_median = {};
- BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile)
- BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_p_square_quantile_for_median)
- }
- using extract::weighted_p_square_quantile;
- using extract::weighted_p_square_quantile_for_median;
- }} // namespace boost::accumulators
- #endif
|