123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- ///////////////////////////////////////////////////////////////////////////////
- // variance.hpp
- //
- // Copyright 2005 Daniel Egloff, Eric Niebler. Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005
- #define BOOST_ACCUMULATORS_STATISTICS_VARIANCE_HPP_EAN_28_10_2005
- #include <boost/mpl/placeholders.hpp>
- #include <boost/accumulators/framework/accumulator_base.hpp>
- #include <boost/accumulators/framework/extractor.hpp>
- #include <boost/accumulators/numeric/functional.hpp>
- #include <boost/accumulators/framework/parameters/sample.hpp>
- #include <boost/accumulators/framework/depends_on.hpp>
- #include <boost/accumulators/statistics_fwd.hpp>
- #include <boost/accumulators/statistics/count.hpp>
- #include <boost/accumulators/statistics/sum.hpp>
- #include <boost/accumulators/statistics/mean.hpp>
- #include <boost/accumulators/statistics/moment.hpp>
- namespace boost { namespace accumulators
- {
- namespace impl
- {
- //! Lazy calculation of variance.
- /*!
- Default sample variance implementation based on the second moment \f$ M_n^{(2)} \f$ moment<2>, mean and count.
- \f[
- \sigma_n^2 = M_n^{(2)} - \mu_n^2.
- \f]
- where
- \f[
- \mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.
- \f]
- is the estimate of the sample mean and \f$n\f$ is the number of samples.
- */
- template<typename Sample, typename MeanFeature>
- struct lazy_variance_impl
- : accumulator_base
- {
- // for boost::result_of
- typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;
- lazy_variance_impl(dont_care) {}
- template<typename Args>
- result_type result(Args const &args) const
- {
- extractor<MeanFeature> mean;
- result_type tmp = mean(args);
- return accumulators::moment<2>(args) - tmp * tmp;
- }
-
- // serialization is done by accumulators it depends on
- template<class Archive>
- void serialize(Archive & /* ar */, const unsigned int /* file_version */) {}
- };
- //! Iterative calculation of variance.
- /*!
- Iterative calculation of sample variance \f$\sigma_n^2\f$ according to the formula
- \f[
- \sigma_n^2 = \frac{1}{n} \sum_{i = 1}^n (x_i - \mu_n)^2 = \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n-1}(x_n - \mu_n)^2.
- \f]
- where
- \f[
- \mu_n = \frac{1}{n} \sum_{i = 1}^n x_i.
- \f]
- is the estimate of the sample mean and \f$n\f$ is the number of samples.
- Note that the sample variance is not defined for \f$n <= 1\f$.
- A simplification can be obtained by the approximate recursion
- \f[
- \sigma_n^2 \approx \frac{n-1}{n} \sigma_{n-1}^2 + \frac{1}{n}(x_n - \mu_n)^2.
- \f]
- because the difference
- \f[
- \left(\frac{1}{n-1} - \frac{1}{n}\right)(x_n - \mu_n)^2 = \frac{1}{n(n-1)}(x_n - \mu_n)^2.
- \f]
- converges to zero as \f$n \rightarrow \infty\f$. However, for small \f$ n \f$ the difference
- can be non-negligible.
- */
- template<typename Sample, typename MeanFeature, typename Tag>
- struct variance_impl
- : accumulator_base
- {
- // for boost::result_of
- typedef typename numeric::functional::fdiv<Sample, std::size_t>::result_type result_type;
- template<typename Args>
- variance_impl(Args const &args)
- : variance(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value))
- {
- }
- template<typename Args>
- void operator ()(Args const &args)
- {
- std::size_t cnt = count(args);
- if(cnt > 1)
- {
- extractor<MeanFeature> mean;
- result_type tmp = args[parameter::keyword<Tag>::get()] - mean(args);
- this->variance =
- numeric::fdiv(this->variance * (cnt - 1), cnt)
- + numeric::fdiv(tmp * tmp, cnt - 1);
- }
- }
- result_type result(dont_care) const
- {
- return this->variance;
- }
- // make this accumulator serializeable
- template<class Archive>
- void serialize(Archive & ar, const unsigned int /* file_version */)
- {
- ar & variance;
- }
- private:
- result_type variance;
- };
- } // namespace impl
- ///////////////////////////////////////////////////////////////////////////////
- // tag::variance
- // tag::immediate_variance
- //
- namespace tag
- {
- struct lazy_variance
- : depends_on<moment<2>, mean>
- {
- /// INTERNAL ONLY
- ///
- typedef accumulators::impl::lazy_variance_impl<mpl::_1, mean> impl;
- };
- struct variance
- : depends_on<count, immediate_mean>
- {
- /// INTERNAL ONLY
- ///
- typedef accumulators::impl::variance_impl<mpl::_1, mean, sample> impl;
- };
- }
- ///////////////////////////////////////////////////////////////////////////////
- // extract::lazy_variance
- // extract::variance
- //
- namespace extract
- {
- extractor<tag::lazy_variance> const lazy_variance = {};
- extractor<tag::variance> const variance = {};
- BOOST_ACCUMULATORS_IGNORE_GLOBAL(lazy_variance)
- BOOST_ACCUMULATORS_IGNORE_GLOBAL(variance)
- }
- using extract::lazy_variance;
- using extract::variance;
- // variance(lazy) -> lazy_variance
- template<>
- struct as_feature<tag::variance(lazy)>
- {
- typedef tag::lazy_variance type;
- };
- // variance(immediate) -> variance
- template<>
- struct as_feature<tag::variance(immediate)>
- {
- typedef tag::variance type;
- };
- // for the purposes of feature-based dependency resolution,
- // immediate_variance provides the same feature as variance
- template<>
- struct feature_of<tag::lazy_variance>
- : feature_of<tag::variance>
- {
- };
- // So that variance can be automatically substituted with
- // weighted_variance when the weight parameter is non-void.
- template<>
- struct as_weighted_feature<tag::variance>
- {
- typedef tag::weighted_variance type;
- };
- // for the purposes of feature-based dependency resolution,
- // weighted_variance provides the same feature as variance
- template<>
- struct feature_of<tag::weighted_variance>
- : feature_of<tag::variance>
- {
- };
- // So that immediate_variance can be automatically substituted with
- // immediate_weighted_variance when the weight parameter is non-void.
- template<>
- struct as_weighted_feature<tag::lazy_variance>
- {
- typedef tag::lazy_weighted_variance type;
- };
- // for the purposes of feature-based dependency resolution,
- // immediate_weighted_variance provides the same feature as immediate_variance
- template<>
- struct feature_of<tag::lazy_weighted_variance>
- : feature_of<tag::lazy_variance>
- {
- };
- ////////////////////////////////////////////////////////////////////////////
- //// droppable_accumulator<variance_impl>
- //// need to specialize droppable lazy variance to cache the result at the
- //// point the accumulator is dropped.
- ///// INTERNAL ONLY
- /////
- //template<typename Sample, typename MeanFeature>
- //struct droppable_accumulator<impl::variance_impl<Sample, MeanFeature> >
- // : droppable_accumulator_base<
- // with_cached_result<impl::variance_impl<Sample, MeanFeature> >
- // >
- //{
- // template<typename Args>
- // droppable_accumulator(Args const &args)
- // : droppable_accumulator::base(args)
- // {
- // }
- //};
- }} // namespace boost::accumulators
- #endif
|