////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2015-2016. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/move for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_MOVE_ADAPTIVE_SORT_HPP #define BOOST_MOVE_ADAPTIVE_SORT_HPP #include #include #include #if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600)) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #pragma GCC diagnostic ignored "-Wconversion" #endif namespace boost { namespace movelib { ///@cond namespace detail_adaptive { template void move_data_backward( RandIt cur_pos , typename iter_size::type const l_data , RandIt new_pos , bool const xbuf_used) { //Move buffer to the total combination right if(xbuf_used){ boost::move_backward(cur_pos, cur_pos+l_data, new_pos+l_data); } else{ boost::adl_move_swap_ranges_backward(cur_pos, cur_pos+l_data, new_pos+l_data); //Rotate does less moves but it seems slower due to cache issues //rotate_gcd(first-l_block, first+len-l_block, first+len); } } template void move_data_forward( RandIt cur_pos , typename iter_size::type const l_data , RandIt new_pos , bool const xbuf_used) { //Move buffer to the total combination right if(xbuf_used){ boost::move(cur_pos, cur_pos+l_data, new_pos); } else{ boost::adl_move_swap_ranges(cur_pos, cur_pos+l_data, new_pos); //Rotate does less moves but it seems slower due to cache issues //rotate_gcd(first-l_block, first+len-l_block, first+len); } } // build blocks of length 2*l_build_buf. l_build_buf is power of two // input: [0, l_build_buf) elements are buffer, rest unsorted elements // output: [0, l_build_buf) elements are buffer, blocks 2*l_build_buf and last subblock sorted // // First elements are merged from right to left until elements start // at first. All old elements [first, first + l_build_buf) are placed at the end // [first+len-l_build_buf, first+len). To achieve this: // - If we have external memory to merge, we save elements from the buffer // so that a non-swapping merge is used. Buffer elements are restored // at the end of the buffer from the external memory. // // - When the external memory is not available or it is insufficient // for a merge operation, left swap merging is used. // // Once elements are merged left to right in blocks of l_build_buf, then a single left // to right merge step is performed to achieve merged blocks of size 2K. // If external memory is available, usual merge is used, swap merging otherwise. // // As a last step, if auxiliary memory is available in-place merge is performed. // until all is merged or auxiliary memory is not large enough. template typename iter_size::type adaptive_sort_build_blocks ( RandIt const first , typename iter_size::type const len , typename iter_size::type const l_base , typename iter_size::type const l_build_buf , XBuf & xbuf , Compare comp) { typedef typename iter_size::type size_type; assert(l_build_buf <= len); assert(0 == ((l_build_buf / l_base)&(l_build_buf/l_base-1))); //Place the start pointer after the buffer RandIt first_block = first + l_build_buf; size_type const elements_in_blocks = size_type(len - l_build_buf); ////////////////////////////////// // Start of merge to left step ////////////////////////////////// size_type l_merged = 0u; assert(l_build_buf); //If there is no enough buffer for the insertion sort step, just avoid the external buffer size_type kbuf = min_value(l_build_buf, size_type(xbuf.capacity())); kbuf = kbuf < l_base ? 0 : kbuf; if(kbuf){ //Backup internal buffer values in external buffer so they can be overwritten xbuf.move_assign(first+l_build_buf-kbuf, kbuf); l_merged = op_insertion_sort_step_left(first_block, elements_in_blocks, l_base, comp, move_op()); //Now combine them using the buffer. Elements from buffer can be //overwritten since they've been saved to xbuf l_merged = op_merge_left_step_multiple ( first_block - l_merged, elements_in_blocks, l_merged, l_build_buf, size_type(kbuf - l_merged), comp, move_op()); //Restore internal buffer from external buffer unless kbuf was l_build_buf, //in that case restoration will happen later if(kbuf != l_build_buf){ boost::move(xbuf.data()+kbuf-l_merged, xbuf.data() + kbuf, first_block-l_merged+elements_in_blocks); } } else{ l_merged = insertion_sort_step(first_block, elements_in_blocks, l_base, comp); rotate_gcd(first_block-l_merged, first_block, first_block+elements_in_blocks); } //Now combine elements using the buffer. Elements from buffer can't be //overwritten since xbuf was not big enough, so merge swapping elements. l_merged = op_merge_left_step_multiple (first_block-l_merged, elements_in_blocks, l_merged, l_build_buf, size_type(l_build_buf - l_merged), comp, swap_op()); assert(l_merged == l_build_buf); ////////////////////////////////// // Start of merge to right step ////////////////////////////////// //If kbuf is l_build_buf then we can merge right without swapping //Saved data is still in xbuf if(kbuf && kbuf == l_build_buf){ op_merge_right_step_once(first, elements_in_blocks, l_build_buf, comp, move_op()); //Restore internal buffer from external buffer if kbuf was l_build_buf. //as this operation was previously delayed. boost::move(xbuf.data(), xbuf.data() + kbuf, first); } else{ op_merge_right_step_once(first, elements_in_blocks, l_build_buf, comp, swap_op()); } xbuf.clear(); //2*l_build_buf or total already merged return min_value(elements_in_blocks, size_type(2u*l_build_buf)); } template void adaptive_sort_combine_blocks ( RandItKeys const keys , KeyCompare key_comp , RandIt const first , typename iter_size::type const len , typename iter_size::type const l_prev_merged , typename iter_size::type const l_block , bool const use_buf , bool const xbuf_used , XBuf & xbuf , Compare comp , bool merge_left) { boost::movelib::ignore(xbuf); typedef typename iter_size::type size_type; size_type const l_reg_combined = size_type(2u*l_prev_merged); size_type l_irreg_combined = 0; size_type const l_total_combined = calculate_total_combined(len, l_prev_merged, &l_irreg_combined); size_type const n_reg_combined = len/l_reg_combined; RandIt combined_first = first; boost::movelib::ignore(l_total_combined); assert(l_total_combined <= len); size_type const max_i = size_type(n_reg_combined + (l_irreg_combined != 0)); if(merge_left || !use_buf) { for( size_type combined_i = 0; combined_i != max_i; ) { //Now merge blocks bool const is_last = combined_i==n_reg_combined; size_type const l_cur_combined = is_last ? l_irreg_combined : l_reg_combined; range_xbuf rbuf( (use_buf && xbuf_used) ? (combined_first-l_block) : combined_first, combined_first); size_type n_block_a, n_block_b, l_irreg1, l_irreg2; combine_params( keys, key_comp, l_cur_combined , l_prev_merged, l_block, rbuf , n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combpar: ", len + l_block); BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first, combined_first + n_block_a*l_block+l_irreg1, comp)); BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first + n_block_a*l_block+l_irreg1, combined_first + n_block_a*l_block+l_irreg1+n_block_b*l_block+l_irreg2, comp)); if(!use_buf){ merge_blocks_bufferless (keys, key_comp, combined_first, l_block, 0u, n_block_a, n_block_b, l_irreg2, comp); } else{ merge_blocks_left (keys, key_comp, combined_first, l_block, 0u, n_block_a, n_block_b, l_irreg2, comp, xbuf_used); } BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After merge_blocks_L: ", len + l_block); ++combined_i; if(combined_i != max_i) combined_first += l_reg_combined; } } else{ combined_first += size_type(l_reg_combined*(max_i-1u)); for( size_type combined_i = max_i; combined_i; ) { --combined_i; bool const is_last = combined_i==n_reg_combined; size_type const l_cur_combined = is_last ? l_irreg_combined : l_reg_combined; RandIt const combined_last(combined_first+l_cur_combined); range_xbuf rbuf(combined_last, xbuf_used ? (combined_last+l_block) : combined_last); size_type n_block_a, n_block_b, l_irreg1, l_irreg2; combine_params( keys, key_comp, l_cur_combined , l_prev_merged, l_block, rbuf , n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combpar: ", len + l_block); BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first, combined_first + n_block_a*l_block+l_irreg1, comp)); BOOST_MOVE_ADAPTIVE_SORT_INVARIANT(boost::movelib::is_sorted(combined_first + n_block_a*l_block+l_irreg1, combined_first + n_block_a*l_block+l_irreg1+n_block_b*l_block+l_irreg2, comp)); merge_blocks_right (keys, key_comp, combined_first, l_block, n_block_a, n_block_b, l_irreg2, comp, xbuf_used); BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After merge_blocks_R: ", len + l_block); if(combined_i) combined_first -= l_reg_combined; } } } //Returns true if buffer is placed in //[buffer+len-l_intbuf, buffer+len). Otherwise, buffer is //[buffer,buffer+l_intbuf) template bool adaptive_sort_combine_all_blocks ( RandIt keys , typename iter_size::type &n_keys , RandIt const buffer , typename iter_size::type const l_buf_plus_data , typename iter_size::type l_merged , typename iter_size::type &l_intbuf , XBuf & xbuf , Compare comp) { typedef typename iter_size::type size_type; RandIt const first = buffer + l_intbuf; size_type const l_data = size_type(l_buf_plus_data - l_intbuf); size_type const l_unique = size_type(l_intbuf + n_keys); //Backup data to external buffer once if possible bool const common_xbuf = l_data > l_merged && l_intbuf && l_intbuf <= xbuf.capacity(); if(common_xbuf){ xbuf.move_assign(buffer, l_intbuf); } bool prev_merge_left = true; size_type l_prev_total_combined = l_merged, l_prev_block = 0; bool prev_use_internal_buf = true; for( size_type n = 0; l_data > l_merged ; l_merged = size_type(2u*l_merged) , ++n){ //If l_intbuf is non-zero, use that internal buffer. // Implies l_block == l_intbuf && use_internal_buf == true //If l_intbuf is zero, see if half keys can be reused as a reduced emergency buffer, // Implies l_block == n_keys/2 && use_internal_buf == true //Otherwise, just give up and and use all keys to merge using rotations (use_internal_buf = false) bool use_internal_buf = false; size_type const l_block = lblock_for_combine(l_intbuf, n_keys, size_type(2*l_merged), use_internal_buf); assert(!l_intbuf || (l_block == l_intbuf)); assert(n == 0 || (!use_internal_buf || prev_use_internal_buf) ); assert(n == 0 || (!use_internal_buf || l_prev_block == l_block) ); bool const is_merge_left = (n&1) == 0; size_type const l_total_combined = calculate_total_combined(l_data, l_merged); if(n && prev_use_internal_buf && prev_merge_left){ if(is_merge_left || !use_internal_buf){ move_data_backward(first-l_prev_block, l_prev_total_combined, first, common_xbuf); } else{ //Put the buffer just after l_total_combined RandIt const buf_end = first+l_prev_total_combined; RandIt const buf_beg = buf_end-l_block; if(l_prev_total_combined > l_total_combined){ size_type const l_diff = size_type(l_prev_total_combined - l_total_combined); move_data_backward(buf_beg-l_diff, l_diff, buf_end-l_diff, common_xbuf); } else if(l_prev_total_combined < l_total_combined){ size_type const l_diff = size_type(l_total_combined - l_prev_total_combined); move_data_forward(buf_end, l_diff, buf_beg, common_xbuf); } } BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" After move_data : ", l_data + l_intbuf); } //Combine to form l_merged*2 segments if(n_keys){ size_type upper_n_keys_this_iter = size_type(2u*l_merged/l_block); if(upper_n_keys_this_iter > 256){ adaptive_sort_combine_blocks ( keys, comp, !use_internal_buf || is_merge_left ? first : first-l_block , l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left); } else{ unsigned char uint_keys[256]; adaptive_sort_combine_blocks ( uint_keys, less(), !use_internal_buf || is_merge_left ? first : first-l_block , l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left); } } else{ size_type *const uint_keys = xbuf.template aligned_trailing(); adaptive_sort_combine_blocks ( uint_keys, less(), !use_internal_buf || is_merge_left ? first : first-l_block , l_data, l_merged, l_block, use_internal_buf, common_xbuf, xbuf, comp, is_merge_left); } BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(is_merge_left ? " After comb blocks L: " : " After comb blocks R: ", l_data + l_intbuf); prev_merge_left = is_merge_left; l_prev_total_combined = l_total_combined; l_prev_block = l_block; prev_use_internal_buf = use_internal_buf; } assert(l_prev_total_combined == l_data); bool const buffer_right = prev_use_internal_buf && prev_merge_left; l_intbuf = prev_use_internal_buf ? l_prev_block : 0u; n_keys = size_type(l_unique - l_intbuf); //Restore data from to external common buffer if used if(common_xbuf){ if(buffer_right){ boost::move(xbuf.data(), xbuf.data() + l_intbuf, buffer+l_data); } else{ boost::move(xbuf.data(), xbuf.data() + l_intbuf, buffer); } } return buffer_right; } template void adaptive_sort_final_merge( bool buffer_right , RandIt const first , typename iter_size::type const l_intbuf , typename iter_size::type const n_keys , typename iter_size::type const len , XBuf & xbuf , Compare comp) { //assert(n_keys || xbuf.size() == l_intbuf); xbuf.clear(); typedef typename iter_size::type size_type; size_type const n_key_plus_buf = size_type(l_intbuf+n_keys); if(buffer_right){ //Use stable sort as some buffer elements might not be unique (see non_unique_buf) stable_sort(first+len-l_intbuf, first+len, comp, xbuf); stable_merge( first+n_keys, first+len-l_intbuf, first+len, antistable(comp), xbuf); unstable_sort(first, first+n_keys, comp, xbuf); stable_merge(first, first+n_keys, first+len, comp, xbuf); } else{ //Use stable sort as some buffer elements might not be unique (see non_unique_buf) stable_sort(first, first+n_key_plus_buf, comp, xbuf); if(xbuf.capacity() >= n_key_plus_buf){ buffered_merge(first, first+n_key_plus_buf, first+len, comp, xbuf); } else if(xbuf.capacity() >= min_value(l_intbuf, n_keys)){ stable_merge( first+n_keys, first+n_key_plus_buf , first+len, comp, xbuf); stable_merge(first, first+n_keys, first+len, comp, xbuf); } else{ stable_merge(first, first+n_key_plus_buf, first+len, comp, xbuf); } } BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" After final_merge : ", len); } template bool adaptive_sort_build_params (RandIt first, Unsigned const len, Compare comp , Unsigned &n_keys, Unsigned &l_intbuf, Unsigned &l_base, Unsigned &l_build_buf , XBuf & xbuf ) { typedef typename iter_size::type size_type; //Calculate ideal parameters and try to collect needed unique keys l_base = 0u; //Try to find a value near sqrt(len) that is 2^N*l_base where //l_base <= AdaptiveSortInsertionSortThreshold. This property is important //as build_blocks merges to the left iteratively duplicating the //merged size and all the buffer must be used just before the final //merge to right step. This guarantees "build_blocks" produces //segments of size l_build_buf*2, maximizing the classic merge phase. l_intbuf = size_type(ceil_sqrt_multiple(len, &l_base)); //The internal buffer can be expanded if there is enough external memory while(xbuf.capacity() >= l_intbuf*2){ l_intbuf = size_type(2u*l_intbuf); } //This is the minimum number of keys to implement the ideal algorithm // //l_intbuf is used as buffer plus the key count size_type n_min_ideal_keys = size_type(l_intbuf-1u); while(n_min_ideal_keys >= (len-l_intbuf-n_min_ideal_keys)/l_intbuf){ --n_min_ideal_keys; } ++n_min_ideal_keys; assert(n_min_ideal_keys <= l_intbuf); if(xbuf.template supports_aligned_trailing (l_intbuf, size_type((size_type(len-l_intbuf)-1u)/l_intbuf+1u))){ n_keys = 0u; l_build_buf = l_intbuf; } else{ //Try to achieve a l_build_buf of length l_intbuf*2, so that we can merge with that //l_intbuf*2 buffer in "build_blocks" and use half of them as buffer and the other half //as keys in combine_all_blocks. In that case n_keys >= n_min_ideal_keys but by a small margin. // //If available memory is 2*sqrt(l), then only sqrt(l) unique keys are needed, //(to be used for keys in combine_all_blocks) as the whole l_build_buf //will be backuped in the buffer during build_blocks. bool const non_unique_buf = xbuf.capacity() >= l_intbuf; size_type const to_collect = non_unique_buf ? n_min_ideal_keys : size_type(l_intbuf*2u); size_type collected = collect_unique(first, first+len, to_collect, comp, xbuf); //If available memory is 2*sqrt(l), then for "build_params" //the situation is the same as if 2*l_intbuf were collected. if(non_unique_buf && collected == n_min_ideal_keys){ l_build_buf = l_intbuf; n_keys = n_min_ideal_keys; } else if(collected == 2*l_intbuf){ //l_intbuf*2 elements found. Use all of them in the build phase l_build_buf = size_type(l_intbuf*2); n_keys = l_intbuf; } else if(collected >= (n_min_ideal_keys+l_intbuf)){ l_build_buf = l_intbuf; n_keys = size_type(collected - l_intbuf); } //If collected keys are not enough, try to fix n_keys and l_intbuf. If no fix //is possible (due to very low unique keys), then go to a slow sort based on rotations. else{ assert(collected < (n_min_ideal_keys+l_intbuf)); if(collected < 4){ //No combination possible with less that 4 keys return false; } n_keys = l_intbuf; while(n_keys & (n_keys-1u)){ n_keys &= size_type(n_keys-1u); // make it power or 2 } while(n_keys > collected){ n_keys/=2; } //AdaptiveSortInsertionSortThreshold is always power of two so the minimum is power of two l_base = min_value(n_keys, AdaptiveSortInsertionSortThreshold); l_intbuf = 0; l_build_buf = n_keys; } assert((n_keys+l_intbuf) >= l_build_buf); } return true; } // Main explanation of the sort algorithm. // // csqrtlen = ceil(sqrt(len)); // // * First, 2*csqrtlen unique elements elements are extracted from elements to be // sorted and placed in the beginning of the range. // // * Step "build_blocks": In this nearly-classic merge step, 2*csqrtlen unique elements // will be used as auxiliary memory, so trailing len-2*csqrtlen elements are // are grouped in blocks of sorted 4*csqrtlen elements. At the end of the step // 2*csqrtlen unique elements are again the leading elements of the whole range. // // * Step "combine_blocks": pairs of previously formed blocks are merged with a different // ("smart") algorithm to form blocks of 8*csqrtlen elements. This step is slower than the // "build_blocks" step and repeated iteratively (forming blocks of 16*csqrtlen, 32*csqrtlen // elements, etc) of until all trailing (len-2*csqrtlen) elements are merged. // // In "combine_blocks" len/csqrtlen elements used are as "keys" (markers) to // know if elements belong to the first or second block to be merged and another // leading csqrtlen elements are used as buffer. Explanation of the "combine_blocks" step: // // Iteratively until all trailing (len-2*csqrtlen) elements are merged: // Iteratively for each pair of previously merged block: // * Blocks are divided groups of csqrtlen elements and // 2*merged_block/csqrtlen keys are sorted to be used as markers // * Groups are selection-sorted by first or last element (depending whether they are going // to be merged to left or right) and keys are reordered accordingly as an imitation-buffer. // * Elements of each block pair are merged using the csqrtlen buffer taking into account // if they belong to the first half or second half (marked by the key). // // * In the final merge step leading elements (2*csqrtlen) are sorted and merged with // rotations with the rest of sorted elements in the "combine_blocks" step. // // Corner cases: // // * If no 2*csqrtlen elements can be extracted: // // * If csqrtlen+len/csqrtlen are extracted, then only csqrtlen elements are used // as buffer in the "build_blocks" step forming blocks of 2*csqrtlen elements. This // means that an additional "combine_blocks" step will be needed to merge all elements. // // * If no csqrtlen+len/csqrtlen elements can be extracted, but still more than a minimum, // then reduces the number of elements used as buffer and keys in the "build_blocks" // and "combine_blocks" steps. If "combine_blocks" has no enough keys due to this reduction // then uses a rotation based smart merge. // // * If the minimum number of keys can't be extracted, a rotation-based sorting is performed. // // * If auxiliary memory is more or equal than ceil(len/2), half-copying mergesort is used. // // * If auxiliary memory is more than csqrtlen+n_keys*sizeof(std::size_t), // then only csqrtlen elements need to be extracted and "combine_blocks" will use integral // keys to combine blocks. // // * If auxiliary memory is available, the "build_blocks" will be extended to build bigger blocks // using classic merge and "combine_blocks" will use bigger blocks when merging. template void adaptive_sort_impl ( RandIt first , typename iter_size::type const len , Compare comp , XBuf & xbuf ) { typedef typename iter_size::type size_type; //Small sorts go directly to insertion sort if(len <= size_type(AdaptiveSortInsertionSortThreshold)){ insertion_sort(first, first + len, comp); } else if((len-len/2) <= xbuf.capacity()){ merge_sort(first, first+len, comp, xbuf.data()); } else{ //Make sure it is at least four BOOST_MOVE_STATIC_ASSERT(AdaptiveSortInsertionSortThreshold >= 4); size_type l_base = 0; size_type l_intbuf = 0; size_type n_keys = 0; size_type l_build_buf = 0; //Calculate and extract needed unique elements. If a minimum is not achieved //fallback to a slow stable sort if(!adaptive_sort_build_params(first, len, comp, n_keys, l_intbuf, l_base, l_build_buf, xbuf)){ stable_sort(first, first+len, comp, xbuf); } else{ assert(l_build_buf); //Otherwise, continue the adaptive_sort BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1("\n After collect_unique: ", len); size_type const n_key_plus_buf = size_type(l_intbuf+n_keys); //l_build_buf is always power of two if l_intbuf is zero assert(l_intbuf || (0 == (l_build_buf & (l_build_buf-1)))); //Classic merge sort until internal buffer and xbuf are exhausted size_type const l_merged = adaptive_sort_build_blocks ( first + n_key_plus_buf-l_build_buf , size_type(len-n_key_plus_buf+l_build_buf) , l_base, l_build_buf, xbuf, comp); BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" After build_blocks: ", len); //Non-trivial merge bool const buffer_right = adaptive_sort_combine_all_blocks (first, n_keys, first+n_keys, size_type(len-n_keys), l_merged, l_intbuf, xbuf, comp); //Sort keys and buffer and merge the whole sequence adaptive_sort_final_merge(buffer_right, first, l_intbuf, n_keys, len, xbuf, comp); } } } } //namespace detail_adaptive { ///@endcond //! Effects: Sorts the elements in the range [first, last) in ascending order according //! to comparison functor "comp". The sort is stable (order of equal elements //! is guaranteed to be preserved). Performance is improved if additional raw storage is //! provided. //! //! Requires: //! - RandIt must meet the requirements of ValueSwappable and RandomAccessIterator. //! - The type of dereferenced RandIt must meet the requirements of MoveAssignable and MoveConstructible. //! //! Parameters: //! - first, last: the range of elements to sort //! - comp: comparison function object which returns true if the first argument is is ordered before the second. //! - uninitialized, uninitialized_len: raw storage starting on "uninitialized", able to hold "uninitialized_len" //! elements of type iterator_traits::value_type. Maximum performance is achieved when uninitialized_len //! is ceil(std::distance(first, last)/2). //! //! Throws: If comp throws or the move constructor, move assignment or swap of the type //! of dereferenced RandIt throws. //! //! Complexity: Always K x O(Nxlog(N)) comparisons and move assignments/constructors/swaps. //! Comparisons are close to minimum even with no additional memory. Constant factor for data movement is minimized //! when uninitialized_len is ceil(std::distance(first, last)/2). Pretty good enough performance is achieved when //! ceil(sqrt(std::distance(first, last)))*2. //! //! Caution: Experimental implementation, not production-ready. template void adaptive_sort( RandIt first, RandIt last, Compare comp , RandRawIt uninitialized , typename iter_size::type uninitialized_len) { typedef typename iter_size::type size_type; typedef typename iterator_traits::value_type value_type; ::boost::movelib::adaptive_xbuf xbuf(uninitialized, uninitialized_len); ::boost::movelib::detail_adaptive::adaptive_sort_impl(first, size_type(last - first), comp, xbuf); } template void adaptive_sort( RandIt first, RandIt last, Compare comp) { typedef typename iterator_traits::value_type value_type; adaptive_sort(first, last, comp, (value_type*)0, 0u); } } //namespace movelib { } //namespace boost { #include #if defined(BOOST_CLANG) || (defined(BOOST_GCC) && (BOOST_GCC >= 40600)) #pragma GCC diagnostic pop #endif #endif //#define BOOST_MOVE_ADAPTIVE_SORT_HPP