/////////////////////////////////////////////////////////////////////////////// // Copyright 2014 Anton Bikineev // Copyright 2014 Christopher Kormanyos // Copyright 2014 John Maddock // Copyright 2014 Paul Bristow // Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_HYPERGEOMETRIC_0F1_HPP #define BOOST_MATH_HYPERGEOMETRIC_0F1_HPP #include #include #include #include namespace boost { namespace math { namespace detail { template struct hypergeometric_0F1_cf { // // We start this continued fraction at b on index -1 // and treat the -1 and 0 cases as special cases. // We do this to avoid adding the continued fraction result // to 1 so that we can accurately evaluate for small results // as well as large ones. See http://functions.wolfram.com/07.17.10.0002.01 // T b, z; int k; hypergeometric_0F1_cf(T b_, T z_) : b(b_), z(z_), k(-2) {} typedef std::pair result_type; result_type operator()() { ++k; if (k <= 0) return std::make_pair(z / b, 1); return std::make_pair(-z / ((k + 1) * (b + k)), 1 + z / ((k + 1) * (b + k))); } }; template T hypergeometric_0F1_cf_imp(T b, T z, const Policy& pol, const char* function) { hypergeometric_0F1_cf evaluator(b, z); std::uintmax_t max_iter = policies::get_max_series_iterations(); T cf = tools::continued_fraction_b(evaluator, policies::get_epsilon(), max_iter); policies::check_series_iterations(function, max_iter, pol); return cf; } template inline T hypergeometric_0F1_imp(const T& b, const T& z, const Policy& pol) { const char* function = "boost::math::hypergeometric_0f1<%1%,%1%>(%1%, %1%)"; BOOST_MATH_STD_USING // some special cases if (z == 0) return T(1); if ((b <= 0) && (b == floor(b))) return policies::raise_pole_error( function, "Evaluation of 0f1 with nonpositive integer b = %1%.", b, pol); if (z < -5 && b > -5) { // Series is alternating and divergent, need to do something else here, // Bessel function relation is much more accurate, unless |b| is similarly // large to |z|, otherwise the CF formula suffers from cancellation when // the result would be very small. if (fabs(z / b) > 4) return hypergeometric_0F1_bessel(b, z, pol); return hypergeometric_0F1_cf_imp(b, z, pol, function); } // evaluation through Taylor series looks // more precisious than Bessel relation: // detail::hypergeometric_0f1_bessel(b, z, pol); return detail::hypergeometric_0F1_generic_series(b, z, pol); } } // namespace detail template inline typename tools::promote_args::type hypergeometric_0F1(T1 b, T2 z, const Policy& /* pol */) { BOOST_FPU_EXCEPTION_GUARD typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; return policies::checked_narrowing_cast( detail::hypergeometric_0F1_imp( static_cast(b), static_cast(z), forwarding_policy()), "boost::math::hypergeometric_0F1<%1%>(%1%,%1%)"); } template inline typename tools::promote_args::type hypergeometric_0F1(T1 b, T2 z) { return hypergeometric_0F1(b, z, policies::policy<>()); } } } // namespace boost::math #endif // BOOST_MATH_HYPERGEOMETRIC_HPP