// (C) Copyright 2007 Andrew Sutton // // Use, modification and distribution are subject to the // Boost Software License, Version 1.0 (See accompanying file // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GRAPH_DETAIL_GEODESIC_HPP #define BOOST_GRAPH_DETAIL_GEODESIC_HPP #include #include #include #include #include // TODO: Should this really be in detail? namespace boost { // This is a very good discussion on centrality measures. While I can't // say that this has been the motivating factor for the design and // implementation of ths centrality framework, it does provide a single // point of reference for defining things like degree and closeness // centrality. Plus, the bibliography seems fairly complete. // // @article{citeulike:1144245, // author = {Borgatti, Stephen P. and Everett, Martin G.}, // citeulike-article-id = {1144245}, // doi = {10.1016/j.socnet.2005.11.005}, // journal = {Social Networks}, // month = {October}, // number = {4}, // pages = {466--484}, // priority = {0}, // title = {A Graph-theoretic perspective on centrality}, // url = {https://doi.org/10.1016/j.socnet.2005.11.005}, // volume = {28}, // year = {2006} // } // } namespace detail { // Note that this assumes T == property_traits::value_type // and that the args and return of combine are also T. template < typename Graph, typename DistanceMap, typename Combinator, typename Distance > inline Distance combine_distances( const Graph& g, DistanceMap dist, Combinator combine, Distance init) { BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef typename graph_traits< Graph >::vertex_iterator VertexIterator; BOOST_CONCEPT_ASSERT( (ReadablePropertyMapConcept< DistanceMap, Vertex >)); BOOST_CONCEPT_ASSERT((NumericValueConcept< Distance >)); typedef numeric_values< Distance > DistanceNumbers; // NOTE: Disabled until this concept assert is fixed in Boost.ConceptCheck. // BOOST_CONCEPT_ASSERT((AdaptableBinaryFunction< Combinator, Distance, // Distance, Distance >)); // If there's ever an infinite distance, then we simply return // infinity. Note that this /will/ include the a non-zero // distance-to-self in the combined values. However, this is usually // zero, so it shouldn't be too problematic. Distance ret = init; VertexIterator i, end; for (boost::tie(i, end) = vertices(g); i != end; ++i) { Vertex v = *i; if (get(dist, v) != DistanceNumbers::infinity()) { ret = combine(ret, get(dist, v)); } else { ret = DistanceNumbers::infinity(); break; } } return ret; } // Similar to std::plus, but maximizes parameters // rather than adding them. template < typename T > struct maximize { typedef T result_type; typedef T first_argument_type; typedef T second_argument_type; T operator()(T x, T y) const { BOOST_USING_STD_MAX(); return max BOOST_PREVENT_MACRO_SUBSTITUTION(x, y); } }; // Another helper, like maximize() to help abstract functional // concepts. This is trivially instantiated for builtin numeric // types, but should be specialized for those types that have // discrete notions of reciprocals. template < typename T > struct reciprocal { typedef T result_type; typedef T argument_type; T operator()(T t) { return T(1) / t; } }; } /* namespace detail */ // This type defines the basic facilities used for computing values // based on the geodesic distances between vertices. Examples include // closeness centrality and mean geodesic distance. template < typename Graph, typename DistanceType, typename ResultType > struct geodesic_measure { typedef DistanceType distance_type; typedef ResultType result_type; typedef typename graph_traits< Graph >::vertices_size_type size_type; typedef numeric_values< distance_type > distance_values; typedef numeric_values< result_type > result_values; static inline distance_type infinite_distance() { return distance_values::infinity(); } static inline result_type infinite_result() { return result_values::infinity(); } static inline result_type zero_result() { return result_values::zero(); } }; } /* namespace boost */ #endif