/** * @file llvector4.h * @brief LLVector4 class header file. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_V4MATH_H #define LL_V4MATH_H #include "llvector2.h" class LLMatrix3; class LLMatrix4; class LLQuaternion; // LLVector4 = |x y z w| constexpr U32 LENGTHOFVECTOR4 = 4; class LLVector4 { public: // Initializes LLVector4 to (0, 0, 0, 1): LL_INLINE LLVector4() noexcept { mV[VX] = mV[VY] = mV[VZ] = 0.f; mV[VW] = 1.f; } // Initializes LLVector4 to (x. y, z, 1): LL_INLINE LLVector4(F32 x, F32 y, F32 z) noexcept { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = 1.f; } LL_INLINE LLVector4(F32 x, F32 y, F32 z, F32 w) noexcept { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = w; } LL_INLINE explicit LLVector4(const F32* vec) noexcept { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; mV[VW] = vec[VW]; } LL_INLINE explicit LLVector4(const F64* vec) noexcept { mV[VX] = (F32)vec[VX]; mV[VY] = (F32)vec[VY]; mV[VZ] = (F32)vec[VZ]; mV[VW] = (F32)vec[VW]; } LL_INLINE explicit LLVector4(const LLVector2& vec) noexcept { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = mV[VW] = 0.f; } LL_INLINE explicit LLVector4(const LLVector2& vec, F32 z, F32 w) noexcept { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = z; mV[VW] = w; } // Initializes LLVector4 to (vec, 1): LL_INLINE explicit LLVector4(const LLVector3& vec) noexcept { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = 1.f; } // Initializes LLVector4 to (vec, w): LL_INLINE explicit LLVector4(const LLVector3& vec, F32 w) noexcept { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = w; } LL_INLINE explicit LLVector4(const LLSD& sd) { mV[0] = sd[0].asReal(); mV[1] = sd[1].asReal(); mV[2] = sd[2].asReal(); mV[3] = sd[3].asReal(); } // Allow the use of the default C++11 move constructor and assignation LLVector4(LLVector4&& other) noexcept = default; LLVector4& operator=(LLVector4&& other) noexcept = default; LLVector4(const LLVector4& other) = default; LLVector4& operator=(const LLVector4& other) = default; LL_INLINE void setValue(const LLSD& sd) { mV[0] = sd[0].asReal(); mV[1] = sd[1].asReal(); mV[2] = sd[2].asReal(); mV[3] = sd[3].asReal(); } LL_INLINE LLSD getValue() const { LLSD ret; ret[0] = mV[0]; ret[1] = mV[1]; ret[2] = mV[2]; ret[3] = mV[3]; return ret; } // Checks to see if all values of LLVector3 are finite LL_INLINE bool isFinite() const { return llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ]) && llfinite(mV[VW]); } // Clears LLVector4 to (0, 0, 0, 1) LL_INLINE void clear() { mV[VX] = mV[VY] = mV[VZ] = 0.f; mV[VW] = 1.f; } // Clears LLVector4 to (0, 0, 0, 0) LL_INLINE void setZero() { mV[VX] = mV[VY] = mV[VZ] = mV[VW] = 0.f; } // Sets LLVector4 to (x, y, z, 1) LL_INLINE void set(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = 1.f; } LL_INLINE void set(F32 x, F32 y, F32 z, F32 w) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; mV[VW] = w; } LL_INLINE void set(const LLVector4& vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = vec.mV[VW]; } LL_INLINE void set(const LLVector3& vec, F32 w = 1.f) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; mV[VW] = w; } LL_INLINE void set(const F32* vec) { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; mV[VW] = vec[VW]; } // Returns magnitude of LLVector4 LL_INLINE F32 length() const { return sqrtf(mV[VX] * mV[VX] + mV[VY] * mV[VY] + mV[VZ] * mV[VZ]); } // Returns magnitude squared of LLVector4 LL_INLINE F32 lengthSquared() const { return mV[VX] * mV[VX] + mV[VY] * mV[VY] + mV[VZ] * mV[VZ]; } // Normalizes and returns the magnitude LL_INLINE F32 normalize() { F32 mag = sqrtf(mV[VX] * mV[VX] + mV[VY] * mV[VY] + mV[VZ] * mV[VZ]); if (mag > FP_MAG_THRESHOLD) { F32 oomag = 1.f / mag; mV[VX] *= oomag; mV[VY] *= oomag; mV[VZ] *= oomag; } else { mV[0] = mV[1] = mV[2] = mag = 0.f; } return mag; } // Sets all values to absolute value of their original values // Returns true if data changed bool abs(); LL_INLINE bool isExactlyClear() const { return mV[VW] == 1.f && !mV[VX] && !mV[VY] && !mV[VZ]; } LL_INLINE bool isExactlyZero() const { return !mV[VW] && !mV[VX] && !mV[VY] && !mV[VZ]; } // Rotates about vec by angle radians const LLVector4& rotVec(F32 angle, const LLVector4& vec); // Rotates about x,y,z by angle radians const LLVector4& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates by MAT4 mat const LLVector4& rotVec(const LLMatrix4& mat); // Rotates by QUAT q const LLVector4& rotVec(const LLQuaternion& q); // Scales component-wise by vec const LLVector4& scaleVec(const LLVector4& vec); LL_INLINE F32 operator[](int idx) const { return mV[idx]; } LL_INLINE F32& operator[](int idx) { return mV[idx]; } friend std::ostream& operator<<(std::ostream& s, const LLVector4& a); // Prints a friend LLVector4 operator+(const LLVector4& a, const LLVector4& b); // Returns vector a + b friend LLVector4 operator-(const LLVector4& a, const LLVector4& b); // Returns vector a minus b friend F32 operator*(const LLVector4& a, const LLVector4& b); // Returns a dot b friend LLVector4 operator%(const LLVector4& a, const LLVector4& b); // Returns a cross b friend LLVector4 operator/(const LLVector4& a, F32 k); // Returns a divided by scaler k friend LLVector4 operator*(const LLVector4& a, F32 k); // Returns a times scaler k friend LLVector4 operator*(F32 k, const LLVector4& a); // Returns a times scaler k friend bool operator==(const LLVector4& a, const LLVector4& b); // Returns a == b friend bool operator!=(const LLVector4& a, const LLVector4& b); // Returns a != b friend const LLVector4& operator+=(LLVector4& a, const LLVector4& b); // Returns vector a + b friend const LLVector4& operator-=(LLVector4& a, const LLVector4& b); // Returns vector a minus b friend const LLVector4& operator%=(LLVector4& a, const LLVector4& b); // Returns a cross b friend const LLVector4& operator*=(LLVector4& a, F32 k); // Returns a times scaler k friend const LLVector4& operator/=(LLVector4& a, F32 k); // Returns a divided by scaler k friend LLVector4 operator-(const LLVector4& a); // Returns vector -a public: F32 mV[LENGTHOFVECTOR4]; }; // Non-member functions // Returns distance between a and b LL_INLINE F32 dist_vec(const LLVector4& a, const LLVector4& b) { LLVector4 vec = a - b; return vec.length(); } // Returns distance squared between a and b LL_INLINE F32 dist_vec_squared(const LLVector4& a, const LLVector4& b) { LLVector4 vec = a - b; return vec.lengthSquared(); } // Returns a vector that is a linear interpolation between a and b LL_INLINE LLVector4 lerp(const LLVector4& a, const LLVector4& b, F32 u) { return LLVector4(a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u, a.mV[VW] + (b.mV[VW] - a.mV[VW]) * u); } // Returns angle (radians) between a and b F32 angle_between(const LLVector4& a, const LLVector4& b); // Returns true if a and b are very close to parallel bool are_parallel(const LLVector4& a, const LLVector4& b, F32 epsilon = F_APPROXIMATELY_ZERO); LLVector3 vec4to3(const LLVector4& vec); LLVector4 vec3to4(const LLVector3& vec); // LLVector4 Operators LL_INLINE LLVector4 operator+(const LLVector4& a, const LLVector4& b) { LLVector4 c(a); return c += b; } LL_INLINE LLVector4 operator-(const LLVector4& a, const LLVector4& b) { LLVector4 c(a); return c -= b; } LL_INLINE F32 operator*(const LLVector4& a, const LLVector4& b) { return a.mV[VX] * b.mV[VX] + a.mV[VY] * b.mV[VY] + a.mV[VZ] * b.mV[VZ]; } LL_INLINE LLVector4 operator%(const LLVector4& a, const LLVector4& b) { return LLVector4(a.mV[VY] * b.mV[VZ] - b.mV[VY] * a.mV[VZ], a.mV[VZ] * b.mV[VX] - b.mV[VZ] * a.mV[VX], a.mV[VX] * b.mV[VY] - b.mV[VX] * a.mV[VY]); } LL_INLINE LLVector4 operator/(const LLVector4& a, F32 k) { F32 t = 1.f / k; return LLVector4(a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t); } LL_INLINE LLVector4 operator*(const LLVector4& a, F32 k) { return LLVector4(a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k); } LL_INLINE LLVector4 operator*(F32 k, const LLVector4& a) { return LLVector4(a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k); } LL_INLINE bool operator==(const LLVector4& a, const LLVector4& b) { return a.mV[VX] == b.mV[VX] && a.mV[VY] == b.mV[VY] && a.mV[VZ] == b.mV[VZ]; } LL_INLINE bool operator!=(const LLVector4& a, const LLVector4& b) { return a.mV[VX] != b.mV[VX] || a.mV[VY] != b.mV[VY] || a.mV[VZ] != b.mV[VZ] || a.mV[VW] != b.mV[VW]; } LL_INLINE const LLVector4& operator+=(LLVector4& a, const LLVector4& b) { a.mV[VX] += b.mV[VX]; a.mV[VY] += b.mV[VY]; a.mV[VZ] += b.mV[VZ]; return a; } LL_INLINE const LLVector4& operator-=(LLVector4& a, const LLVector4& b) { a.mV[VX] -= b.mV[VX]; a.mV[VY] -= b.mV[VY]; a.mV[VZ] -= b.mV[VZ]; return a; } LL_INLINE const LLVector4& operator%=(LLVector4& a, const LLVector4& b) { LLVector4 ret(a.mV[VY] * b.mV[VZ] - b.mV[VY] * a.mV[VZ], a.mV[VZ] * b.mV[VX] - b.mV[VZ] * a.mV[VX], a.mV[VX] * b.mV[VY] - b.mV[VX] * a.mV[VY]); a = ret; return a; } LL_INLINE const LLVector4& operator*=(LLVector4& a, F32 k) { a.mV[VX] *= k; a.mV[VY] *= k; a.mV[VZ] *= k; return a; } LL_INLINE const LLVector4& operator/=(LLVector4& a, F32 k) { F32 t = 1.f / k; a.mV[VX] *= t; a.mV[VY] *= t; a.mV[VZ] *= t; return a; } LL_INLINE LLVector4 operator-(const LLVector4& a) { return LLVector4(-a.mV[VX], -a.mV[VY], -a.mV[VZ]); } LL_INLINE const LLVector4 srgbVector4(const LLVector4& a) { return LLVector4(linearToSRGB(a.mV[0]), linearToSRGB(a.mV[1]), linearToSRGB(a.mV[2]), a.mV[3]); } #endif // LL_V4MATH_H