/** * @file llplane.h * * $LicenseInfo:firstyear=2001&license=viewergpl$ * * Copyright (c) 2001-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_LLPLANE_H #define LL_LLPLANE_H #include "llvector4.h" // A simple way to specify a plane is to give its normal, // and it's nearest approach to the origin. // // Given the equation for a plane : A*x + B*y + C*z + D = 0 // The plane normal = [A, B, C] // The closest approach = D / sqrtf(A*A + B*B + C*C) class alignas(16) LLPlane { public: LL_INLINE LLPlane() = default; LL_INLINE LLPlane(const LLVector3& p0, F32 d) { setVec(p0, d); } LL_INLINE LLPlane(const LLVector3& p0, const LLVector3& n) { setVec(p0, n); } LL_INLINE void setVec(const LLVector3& p0, F32 d) { mV.set(p0[0], p0[1], p0[2], d); } LL_INLINE void setVec(const LLVector3& p0, const LLVector3& n) { F32 d = -(p0 * n); setVec(n, d); } LL_INLINE void setVec(const LLVector3& p0, const LLVector3& p1, const LLVector3& p2) { LLVector3 u, v, w; u = p1 - p0; v = p2 - p0; w = u % v; w.normalize(); F32 d = -(w * p0); setVec(w, d); } LL_INLINE LLPlane& operator=(const LLVector4& v2) { mV.set(v2[0], v2[1], v2[2], v2[3]); return *this; } LL_INLINE LLPlane& operator=(const LLVector4a& v2) { mV.set(v2[0], v2[1], v2[2], v2[3]); return *this; } LL_INLINE void set(const LLPlane& p2) { mV = p2.mV; } LL_INLINE F32 dist(const LLVector3& v2) const { return mV[0] * v2[0] + mV[1] * v2[1] + mV[2] * v2[2] + mV[3]; } LL_INLINE LLSimdScalar dot3(const LLVector4a& b) const { return mV.dot3(b); } // Read-only access a single float in this vector. Do not use in proximity // to any function call that manipulates the data at the whole vector level // or you will incur a substantial penalty. Consider using the splat // functions instead LL_INLINE F32 operator[](S32 idx) const { return mV[idx]; } // preferable when index is known at compile time template LL_INLINE void getAt(LLSimdScalar& v) const { v = mV.getScalarAt(); } // Reset the vector to 0, 0, 0, 1 LL_INLINE void clear() { mV.set(0.f, 0.f, 0.f, 1.f); } LL_INLINE void getVector3(LLVector3& vec) const { vec.set(mV[0], mV[1], mV[2]); } // Retrieve the mask indicating which of the x, y, or z axis are greater // or equal to zero. LL_INLINE U8 calcPlaneMask() const { return mV.greaterEqual(LLVector4a::getZero()).getGatheredBits() & LLVector4Logical::MASK_XYZ; } // Check if two planes are nearly same LL_INLINE bool equal(const LLPlane& p) const { return mV.equals4(p.mV); } private: LLVector4a mV; }; #endif // LL_LLPLANE_H