/* * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2007, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if SSE2NEON # define SSE2NEON_ALLOC_DEFINED # include "sse2neon.h" /* Since we emulate SSE/2/4 with NEON, let's make sure __SSE*__ is defined */ # if !defined(__SSE__) # define __SSE__ 1 # endif # if !defined(__SSE2__) # define __SSE2__ 1 # endif # if !defined(__SSE4_1__) # define __SSE4_1__ 1 # endif #else # include #endif /* MSVC does not define __SSE__ neither __SSE2__... */ #if !defined(__SSE__) && (defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 1)) # define __SSE__ 1 #endif #if !defined(__SSE2__) && (defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 2)) # define __SSE2__ 1 /* MSVC does not define __SSE4_1__ either, but when AVX is here, so should be SSE 4.1... */ # if !defined(__SSE4_1__) && defined(__AVX__) # define __SSE4_1__ 1 # endif #endif #if defined(_M_X64) || defined(__x86_64__) # define INTPTR_T long long #else # define INTPTR_T long #endif #include "opj_includes.h" #if defined(__MSVC_VER__) || defined(_MSC_VER) # pragma warning(disable : 4311) #endif /* */ /* This table contains the norms of the basis function of the reversible MCT. */ /* */ static const double mct_norms[3] = { 1.732, .8292, .8292 }; /* */ /* This table contains the norms of the basis function of the irreversible MCT. */ /* */ static const double mct_norms_real[3] = { 1.732, 1.805, 1.573 }; /* */ /* Foward reversible MCT. */ /* */ #ifdef __SSE2__ void mct_encode(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i = 0; /* Buffers are normally aligned on 16 bytes... */ if (((INTPTR_T)c0 & 0xf) == 0 && ((INTPTR_T)c1 & 0xf) == 0 && ((INTPTR_T)c2 & 0xf) == 0) { const int cnt = n & ~3U; for ( ; i < cnt; i += 4) { __m128i y, u, v; __m128i r = _mm_load_si128((const __m128i*)&(c0[i])); __m128i g = _mm_load_si128((const __m128i*)&(c1[i])); __m128i b = _mm_load_si128((const __m128i*)&(c2[i])); y = _mm_add_epi32(g, g); y = _mm_add_epi32(y, b); y = _mm_add_epi32(y, r); y = _mm_srai_epi32(y, 2); u = _mm_sub_epi32(b, g); v = _mm_sub_epi32(r, g); _mm_store_si128((__m128i*)&(c0[i]), y); _mm_store_si128((__m128i*)&(c1[i]), u); _mm_store_si128((__m128i*)&(c2[i]), v); } } for ( ; i < n; ++i) { int r = c0[i]; int g = c1[i]; int b = c2[i]; int y = (r + g + g + b) >> 2; int u = b - g; int v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #else void mct_encode(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i; for (i = 0; i < n; ++i) { int r = c0[i]; int g = c1[i]; int b = c2[i]; int y = (r + g + g + b) >> 2; int u = b - g; int v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #endif /* */ /* Inverse reversible MCT. */ /* */ #ifdef __SSE2__ void mct_decode(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i = 0; /* Buffers are normally aligned on 16 bytes... */ if (((INTPTR_T)c0 & 0xf) == 0 && ((INTPTR_T)c1 & 0xf) == 0 && ((INTPTR_T)c2 & 0xf) == 0) { const int cnt = n & ~3U; for ( ; i < cnt; i += 4) { __m128i r, g, b; __m128i y = _mm_load_si128((const __m128i*)&(c0[i])); __m128i u = _mm_load_si128((const __m128i*)&(c1[i])); __m128i v = _mm_load_si128((const __m128i*)&(c2[i])); g = y; g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2)); r = _mm_add_epi32(v, g); b = _mm_add_epi32(u, g); _mm_store_si128((__m128i*)&(c0[i]), r); _mm_store_si128((__m128i*)&(c1[i]), g); _mm_store_si128((__m128i*)&(c2[i]), b); } } for ( ; i < n; ++i) { int y = c0[i]; int u = c1[i]; int v = c2[i]; int g = y - ((u + v) >> 2); int r = v + g; int b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #else void mct_decode(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i; for (i = 0; i < n; ++i) { int y = c0[i]; int u = c1[i]; int v = c2[i]; int g = y - ((u + v) >> 2); int r = v + g; int b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #endif /* */ /* Get norm of basis function of reversible MCT. */ /* */ double mct_getnorm(int compno) { return mct_norms[compno]; } /* */ /* Foward irreversible MCT. */ /* */ #ifdef __SSE4_1__ void mct_encode_real(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i = 0; /* Buffers are normally aligned on 16 bytes... */ if (((INTPTR_T)c0 & 0xf) == 0 && ((INTPTR_T)c1 & 0xf) == 0 && ((INTPTR_T)c2 & 0xf) == 0) { const int cnt = n & ~3U; const __m128i ry = _mm_set1_epi32(2449); const __m128i gy = _mm_set1_epi32(4809); const __m128i by = _mm_set1_epi32(934); const __m128i ru = _mm_set1_epi32(1382); const __m128i gu = _mm_set1_epi32(2714); const __m128i gv = _mm_set1_epi32(3430); const __m128i bv = _mm_set1_epi32(666); const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), _MM_SHUFFLE(1, 0, 1, 0)); for ( ; i < cnt; i += 4) { __m128i lo, hi, y, u, v; __m128i r = _mm_load_si128((const __m128i*)&(c0[i])); __m128i g = _mm_load_si128((const __m128i*)&(c1[i])); __m128i b = _mm_load_si128((const __m128i*)&(c2[i])); hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(r, ry); hi = _mm_mul_epi32(hi, ry); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); y = _mm_blend_epi16(lo, hi, 0xCC); hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(g, gy); hi = _mm_mul_epi32(hi, gy); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(b, by); hi = _mm_mul_epi32(hi, by); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *) & (c0[i]), y); lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0))); hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1))); lo = _mm_slli_epi64(lo, 12); hi = _mm_slli_epi64(hi, 12); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); u = _mm_blend_epi16(lo, hi, 0xCC); hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(r, ru); hi = _mm_mul_epi32(hi, ru); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(g, gu); hi = _mm_mul_epi32(hi, gu); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *) & (c1[i]), u); lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0))); hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1))); lo = _mm_slli_epi64(lo, 12); hi = _mm_slli_epi64(hi, 12); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); v = _mm_blend_epi16(lo, hi, 0xCC); hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(g, gv); hi = _mm_mul_epi32(hi, gv); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(b, bv); hi = _mm_mul_epi32(hi, bv); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32 - 13); v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *) & (c2[i]), v); } } for ( ; i < n; ++i) { int r = c0[i]; int g = c1[i]; int b = c2[i]; int y = fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934); int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096); int v = fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666); c0[i] = y; c1[i] = u; c2[i] = v; } } #else void mct_encode_real(int* restrict c0, int* restrict c1, int* restrict c2, int n) { int i; for (i = 0; i < n; ++i) { int r = c0[i]; int g = c1[i]; int b = c2[i]; int y = fix_mul(r, 2449) + fix_mul(g, 4809) + fix_mul(b, 934); int u = -fix_mul(r, 1382) - fix_mul(g, 2714) + fix_mul(b, 4096); int v = fix_mul(r, 4096) - fix_mul(g, 3430) - fix_mul(b, 666); c0[i] = y; c1[i] = u; c2[i] = v; } } #endif /* */ /* Inverse irreversible MCT. */ /* */ void mct_decode_real(float* restrict c0, float* restrict c1, float* restrict c2, int n) { int i; #ifdef __SSE__ int count = n >> 3; __m128 vrv, vgu, vgv, vbu; vrv = _mm_set1_ps(1.402f); vgu = _mm_set1_ps(0.34413f); vgv = _mm_set1_ps(0.71414f); vbu = _mm_set1_ps(1.772f); for (i = 0; i < count; ++i) { __m128 vy, vu, vv; __m128 vr, vg, vb; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; } n &= 7; #endif for (i = 0; i < n; ++i) { float y = c0[i]; float u = c1[i]; float v = c2[i]; float r = y + (v * 1.402f); float g = y - (u * 0.34413f) - (v * 0.71414f); float b = y + (u * 1.772f); c0[i] = r; c1[i] = g; c2[i] = b; } } /* */ /* Get norm of basis function of irreversible MCT. */ /* */ double mct_getnorm_real(int compno) { return mct_norms_real[compno]; }