/* * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2007, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2007, Jonathan Ballard * Copyright (c) 2007, Callum Lerwick * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if SSE2NEON # define SSE2NEON_ALLOC_DEFINED # include "sse2neon.h" /* Since we emulate SSE with NEON, let's make sure __SSE__ is defined */ # if !defined(__SSE__) # define __SSE__ 1 # endif #else # include #endif /* MSVC does not define __SSE__... */ #if !defined(__SSE__) && (defined(_M_X64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 1)) # define __SSE__ 1 #endif #include "opj_includes.h" /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ /** @name Local data structures */ /*@{*/ typedef struct dwt_local { int* mem; int dn; int sn; int cas; } dwt_t; typedef union { float f[4]; } v4; typedef struct v4dwt_local { v4* wavelet ; int dn ; int sn ; int cas ; } v4dwt_t ; static const float dwt_alpha = 1.586134342f; // 12994 static const float dwt_beta = 0.052980118f; // 434 static const float dwt_gamma = -0.882911075f; // -7233 static const float dwt_delta = -0.443506852f; // -3633 static const float K = 1.230174105f; // 10078 /* FIXME: What is this constant? */ static const float c13318 = 1.625732422f; /*@}*/ /** Virtual function type for wavelet transform in 1-D */ typedef void (*DWT1DFN)(dwt_t* v); /** @name Local static functions */ /*@{*/ /** Forward lazy transform (horizontal) */ static void dwt_deinterleave_h(int* a, int* b, int dn, int sn, int cas); /** Forward lazy transform (vertical) */ static void dwt_deinterleave_v(int* a, int* b, int dn, int sn, int x, int cas); /** Inverse lazy transform (horizontal) */ static void dwt_interleave_h(dwt_t* h, int* a); /** Inverse lazy transform (vertical) */ static void dwt_interleave_v(dwt_t* v, int* a, int x); /** Forward 5-3 wavelet transform in 1-D */ static void dwt_encode_1(int* a, int dn, int sn, int cas); /** Inverse 5-3 wavelet transform in 1-D */ static void dwt_decode_1(dwt_t* v); /** Forward 9-7 wavelet transform in 1-D */ static void dwt_encode_1_real(int* a, int dn, int sn, int cas); /** Explicit calculation of the Quantization Stepsizes */ static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t* bandno_stepsize); /** Inverse wavelet transform in 2-D. */ static void dwt_decode_tile(opj_tcd_tilecomp_t* tilec, int i, DWT1DFN fn); /*@}*/ /*@}*/ #define S(i) a[(i)*2] #define D(i) a[(1+(i)*2)] #define S_(i) ((i)<0?S(0):((i)>=sn?S(sn-1):S(i))) #define D_(i) ((i)<0?D(0):((i)>=dn?D(dn-1):D(i))) /* new */ #define SS_(i) ((i)<0?S(0):((i)>=dn?S(dn-1):S(i))) #define DD_(i) ((i)<0?D(0):((i)>=sn?D(sn-1):D(i))) /* */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* */ static const double dwt_norms[4][10] = { {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} }; /* */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* */ static const double dwt_norms_real[4][10] = { {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} }; /* ========================================================== local functions ========================================================== */ /* */ /* Forward lazy transform (horizontal). */ /* */ static void dwt_deinterleave_h(int* a, int* b, int dn, int sn, int cas) { int i; for (i=0; i */ /* Forward lazy transform (vertical). */ /* */ static void dwt_deinterleave_v(int* a, int* b, int dn, int sn, int x, int cas) { int i; for (i=0; i */ /* Inverse lazy transform (horizontal). */ /* */ static void dwt_interleave_h(dwt_t* h, int* a) { int* ai = a; int* bi = h->mem + h->cas; int i = h->sn; while( i-- ) { *bi = *(ai++); bi += 2; } ai = a + h->sn; bi = h->mem + 1 - h->cas; i = h->dn ; while( i-- ) { *bi = *(ai++); bi += 2; } } /* */ /* Inverse lazy transform (vertical). */ /* */ static void dwt_interleave_v(dwt_t* v, int* a, int x) { int* ai = a; int* bi = v->mem + v->cas; int i = v->sn; while( i-- ) { *bi = *ai; bi += 2; ai += x; } ai = a + (v->sn * x); bi = v->mem + 1 - v->cas; i = v->dn ; while( i-- ) { *bi = *ai; bi += 2; ai += x; } } /* */ /* Forward 5-3 wavelet transform in 1-D. */ /* */ static void dwt_encode_1(int* a, int dn, int sn, int cas) { if (!cas) { if (dn > 0 || sn > 1) { /* NEW: CASE ONE ELEMENT */ int i; for (i = 0; i < dn; i++) { D(i) -= (S_(i) + S_(i + 1)) >> 1; } for (i = 0; i < sn; i++) { S(i) += (D_(i - 1) + D_(i) + 2) >> 2; } } } else if (!sn && dn == 1) { /* NEW: CASE ONE ELEMENT */ S(0) *= 2; } else { int i; for (i = 0; i < dn; i++) { S(i) -= (DD_(i) + DD_(i - 1)) >> 1; } for (i = 0; i < sn; i++) { D(i) += (SS_(i) + SS_(i + 1) + 2) >> 2; } } } /* */ /* Inverse 5-3 wavelet transform in 1-D. */ /* */ static void dwt_decode_1_(int* a, int dn, int sn, int cas) { int i; if (!cas) { if (dn > 0 || sn > 1) { /* NEW: CASE ONE ELEMENT */ for (i = 0; i < sn; i++) { S(i) -= (D_(i - 1) + D_(i) + 2) >> 2; } for (i = 0; i < dn; i++) { D(i) += (S_(i) + S_(i + 1)) >> 1; } } } else if (!sn && dn == 1) { /* NEW: CASE ONE ELEMENT */ S(0) /= 2; } else { for (i = 0; i < sn; i++) { D(i) -= (SS_(i) + SS_(i + 1) + 2) >> 2; } for (i = 0; i < dn; i++) { S(i) += (DD_(i) + DD_(i - 1)) >> 1; } } } /* */ /* Inverse 5-3 wavelet transform in 1-D. */ /* */ static void dwt_decode_1(dwt_t* v) { dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); } /* */ /* Forward 9-7 wavelet transform in 1-D. */ /* */ static void dwt_encode_1_real(int* a, int dn, int sn, int cas) { int i; if (!cas) { if (dn > 0 || sn > 1) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; ++i) { D(i) -= fix_mul(S_(i) + S_(i + 1), 12993); } for (i = 0; i < sn; ++i) { S(i) -= fix_mul(D_(i - 1) + D_(i), 434); } for (i = 0; i < dn; ++i) { D(i) += fix_mul(S_(i) + S_(i + 1), 7233); } for (i = 0; i < sn; ++i) { S(i) += fix_mul(D_(i - 1) + D_(i), 3633); } for (i = 0; i < dn; ++i) { D(i) = fix_mul(D(i), 5038); /*5038 */ } for (i = 0; i < sn; ++i) { S(i) = fix_mul(S(i), 6659); /*6660 */ } } } else if (sn > 0 || dn > 1) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; ++i) { S(i) -= fix_mul(DD_(i) + DD_(i - 1), 12993); } for (i = 0; i < sn; ++i) { D(i) -= fix_mul(SS_(i) + SS_(i + 1), 434); } for (i = 0; i < dn; ++i) { S(i) += fix_mul(DD_(i) + DD_(i - 1), 7233); } for (i = 0; i < sn; ++i) { D(i) += fix_mul(SS_(i) + SS_(i + 1), 3633); } for (i = 0; i < dn; ++i) { S(i) = fix_mul(S(i), 5038); /*5038 */ } for (i = 0; i < sn; ++i) { D(i) = fix_mul(D(i), 6659); /*6660 */ } } } static void dwt_encode_stepsize(int stepsize, int numbps, opj_stepsize_t* bandno_stepsize) { int p = int_floorlog2(stepsize) - 13; int n = 11 - int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; } /* ========================================================== DWT interface ========================================================== */ /* */ /* Forward 5-3 wavelet transform in 2-D. */ /* */ void dwt_encode(opj_tcd_tilecomp_t* tilec) { int w = tilec->x1-tilec->x0; int l = tilec->numresolutions-1; int* a = tilec->data; int i, j, k; for (i = 0; i < l; ++i) { /* width of the resolution level computed */ int rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; /* height of the resolution level computed */ int rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; /* width of the resolution level once lower than computed one */ int rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; /* height of the resolution level once lower than computed one */ int rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row = tilec->resolutions[l - i].x0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int cas_col = tilec->resolutions[l - i].y0 % 2; int sn = rh1; int dn = rh - rh1; int* bj = (int*)opj_malloc(rh * sizeof(int)); if (!bj) { /* Memory allocation failure... */ return; } for (j = 0; j < rw; j++) { int* aj = a + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_1(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } opj_free(bj); sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); if (!bj) { /* Memory allocation failure... */ return; } for (j = 0; j < rh; j++) { int* aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_1(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } opj_free(bj); } } /* */ /* Inverse 5-3 wavelet transform in 2-D. */ /* */ void dwt_decode(opj_tcd_tilecomp_t* tilec, int numres) { dwt_decode_tile(tilec, numres, &dwt_decode_1); } /* */ /* Get gain of 5-3 wavelet transform. */ /* */ int dwt_getgain(int orient) { if (orient == 0) return 0; if (orient == 1 || orient == 2) return 1; return 2; } /* */ /* Get norm of 5-3 wavelet. */ /* */ double dwt_getnorm(int level, int orient) { return dwt_norms[orient][level]; } /* */ /* Forward 9-7 wavelet transform in 2-D. */ /* */ void dwt_encode_real(opj_tcd_tilecomp_t* tilec) { int w = tilec->x1-tilec->x0; int l = tilec->numresolutions-1; int* a = tilec->data; int i, j, k; for (i = 0; i < l; i++) { /* width of the resolution level computed */ int rw = tilec->resolutions[l - i].x1 - tilec->resolutions[l - i].x0; /* height of the resolution level computed */ int rh = tilec->resolutions[l - i].y1 - tilec->resolutions[l - i].y0; /* width of the resolution level once lower than computed one */ int rw1= tilec->resolutions[l - i - 1].x1 - tilec->resolutions[l - i - 1].x0; /* height of the resolution level once lower than computed one */ int rh1= tilec->resolutions[l - i - 1].y1 - tilec->resolutions[l - i - 1].y0; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ int cas_row = tilec->resolutions[l - i].x0 % 2; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ int cas_col = tilec->resolutions[l - i].y0 % 2; int sn = rh1; int dn = rh - rh1; int* bj = (int*)opj_malloc(rh * sizeof(int)); if (!bj) { /* Memory allocation failure... */ return; } for (j = 0; j < rw; j++) { int* aj = a + j; for (k = 0; k < rh; k++) bj[k] = aj[k*w]; dwt_encode_1_real(bj, dn, sn, cas_col); dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } opj_free(bj); sn = rw1; dn = rw - rw1; bj = (int*)opj_malloc(rw * sizeof(int)); if (!bj) { /* Memory allocation failure... */ return; } for (j = 0; j < rh; j++) { int* aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; dwt_encode_1_real(bj, dn, sn, cas_row); dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } opj_free(bj); } } /* */ /* Get gain of 9-7 wavelet transform. */ /* */ int dwt_getgain_real(int orient) { (void)orient; return 0; } /* */ /* Get norm of 9-7 wavelet. */ /* */ double dwt_getnorm_real(int level, int orient) { return dwt_norms_real[orient][level]; } void dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, int prec) { int bandno; int numbands = 3 * tccp->numresolutions - 2; for (bandno = 0; bandno < numbands; bandno++) { int resno = bandno == 0 ? 0 : (bandno - 1) / 3 + 1; int orient = bandno == 0 ? 0 : (bandno - 1) % 3 + 1; int level = tccp->numresolutions - 1 - resno; int gain = tccp->qmfbid == 0 ? 0 : (orient == 0 ? 0 : (orient == 1 || orient == 2 ? 1 : 2)); double stepsize; if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { double norm = dwt_norms_real[orient][level]; stepsize = (1 << (gain)) / norm; } dwt_encode_stepsize((int)floor(stepsize * 8192.0), prec + gain, &tccp->stepsizes[bandno]); } } /* */ /* Determine maximum computed resolution level for inverse wavelet transform */ /* */ static int dwt_decode_max_resolution(opj_tcd_resolution_t* restrict r, int i) { int mr = 1; int w; while (--i) { ++r; if (mr < (w = r->x1 - r->x0)) { mr = w; } if (mr < (w = r->y1 - r->y0)) { mr = w; } } return mr; } /* */ /* Inverse wavelet transform in 2-D. */ /* */ static void dwt_decode_tile(opj_tcd_tilecomp_t* tilec, int numres, DWT1DFN dwt_1D) { opj_tcd_resolution_t* tr = tilec->resolutions; int rw = tr->x1 - tr->x0; /* width of the resolution level computed */ int rh = tr->y1 - tr->y0; /* height of the resolution level computed */ int w = tilec->x1 - tilec->x0; dwt_t h; h.mem = (int*)opj_aligned_malloc(dwt_decode_max_resolution(tr, numres) * sizeof(int)); if (!h.mem) { /* Memory allocation failure... */ return; } dwt_t v; v.mem = h.mem; int* restrict tiledp = tilec->data; while (--numres) { h.sn = rw; v.sn = rh; ++tr; rw = tr->x1 - tr->x0; rh = tr->y1 - tr->y0; h.dn = rw - h.sn; h.cas = tr->x0 % 2; int j = 0; int jw = 0; /* j * w */ while (1) { dwt_interleave_h(&h, &tiledp[jw]); (dwt_1D)(&h); memcpy(&tiledp[jw], h.mem, rw * sizeof(int)); if (++j >= rh) { break; } jw += w; } v.dn = rh - v.sn; v.cas = tr->y0 % 2; for (j = 0; j < rw; ++j) { dwt_interleave_v(&v, &tiledp[j], w); (dwt_1D)(&v); int k = 0; int kwj = j; /* k * w + j */ while (1) { tiledp[kwj] = v.mem[k]; if (++k >= rh) { break; } kwj += w; } } } opj_aligned_free(h.mem); } static void v4dwt_interleave_h(v4dwt_t* restrict w, float* restrict a, int x, int size) { float* restrict bi = (float*) (w->wavelet + w->cas); int count = w->sn; int i, k; if ((x & 0x0f) == 0) { for (k = 0; k < 2; ++k) { if (((size_t)a & 0x0f) == 0 && ((size_t)bi & 0x0f) == 0 && count + 3 * x < size) { /* Fast code path */ for (i = 0; i < count; ++i) { float* restrict bk = &bi[i << 3]; bk[0] = a[i]; int j = i + x; bk[1] = a[j]; j += x; bk[2] = a[j]; j += x; bk[3] = a[j]; } } else { /* Slow code path */ for (i = 0; i < count; ++i) { float* restrict bk = &bi[i << 3]; bk[0] = a[i]; int j = i + x; if (j > size) continue; bk[1] = a[j]; j += x; if (j > size) continue; bk[2] = a[j]; j += x; if (j > size) continue; bk[3] = a[j]; } } bi = (float*)(w->wavelet + 1 - w->cas); a += w->sn; size -= w->sn; count = w->dn; } } else { /* Slow code path */ for (k = 0; k < 2; ++k) { for (i = 0; i < count; ++i) { float* restrict bk = &bi[i << 3]; bk[0] = a[i]; int j = i + x; if (j > size) continue; bk[1] = a[j]; j += x; if (j > size) continue; bk[2] = a[j]; j += x; if (j > size) continue; bk[3] = a[j]; } bi = (float*)(w->wavelet + 1 - w->cas); a += w->sn; size -= w->sn; count = w->dn; } } } static void v4dwt_interleave_v(v4dwt_t* restrict v , float* restrict a , int x) { v4* restrict bi = v->wavelet + v->cas; int i; int ix = 0; /* i * x */ for (i = 0; i < v->sn; ++i) { memcpy(&bi[i + i], &a[ix], 4 * sizeof(float)); ix += x; } a += v->sn * x; bi = v->wavelet + 1 - v->cas; ix = 0; /* i * x */ for (i = 0; i < v->dn; ++i) { memcpy(&bi[i + i], &a[ix], 4 * sizeof(float)); ix += x; } } #ifdef __SSE__ static void v4dwt_decode_step1_sse(v4* w, int count, const __m128 c) { __m128* restrict vw = (__m128*)w; int i; int end = count >> 2; /* 4x unrolled loop */ for (i = 0; i < end; ++i) { *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; } count &= 3; for (i = 0; i < count; ++i) { *vw = _mm_mul_ps(*vw, c); vw += 2; } } static void v4dwt_decode_step2_sse(v4* l, v4* w, int k, int m, __m128 c) { __m128* restrict vl = (__m128*)l; __m128* restrict vw = (__m128*)w; __m128 tmp1, tmp2, tmp3; tmp1 = vl[0]; int i; /* 4x loop unrolling */ for (i = 0; i < m - 3; i += 4) { __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9; tmp2 = vw[-1]; tmp3 = vw[0]; tmp4 = vw[1]; tmp5 = vw[2]; tmp6 = vw[3]; tmp7 = vw[4]; tmp8 = vw[5]; tmp9 = vw[6]; vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); vw[1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c)); vw[3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c)); vw[5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c)); tmp1 = tmp9; vw += 8; } for ( ; i < m; ++i) { tmp2 = vw[-1]; tmp3 = vw[0]; vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); tmp1 = tmp3; vw += 2; } if (m >= k) { return; } vl = vw - 2; c = _mm_add_ps(c, c); c = _mm_mul_ps(c, vl[0]); for ( ; m < k; ++m) { __m128 tmp = vw[-1]; vw[-1] = _mm_add_ps(tmp, c); vw += 2; } } #else static void v4dwt_decode_step1(v4* w, int count, const float c) { float* restrict fw = (float*) w; int i; for (i = 0; i < count; ++i) { float tmp1 = fw[i * 8 ]; float tmp2 = fw[i * 8 + 1]; float tmp3 = fw[i * 8 + 2]; float tmp4 = fw[i * 8 + 3]; fw[i * 8] = tmp1 * c; fw[i * 8 + 1] = tmp2 * c; fw[i * 8 + 2] = tmp3 * c; fw[i * 8 + 3] = tmp4 * c; } } static void v4dwt_decode_step2(v4* l, v4* w, int k, int m, float c) { float* restrict fl = (float*) l; float* restrict fw = (float*) w; int i; for (i = 0; i < m; ++i) { float tmp1_1 = fl[0]; float tmp1_2 = fl[1]; float tmp1_3 = fl[2]; float tmp1_4 = fl[3]; float tmp2_1 = fw[-4]; float tmp2_2 = fw[-3]; float tmp2_3 = fw[-2]; float tmp2_4 = fw[-1]; float tmp3_1 = fw[0]; float tmp3_2 = fw[1]; float tmp3_3 = fw[2]; float tmp3_4 = fw[3]; fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); fl = fw; fw += 8; } if (m < k) { float c1; float c2; float c3; float c4; c += c; c1 = fl[0] * c; c2 = fl[1] * c; c3 = fl[2] * c; c4 = fl[3] * c; for (; m < k; ++m) { float tmp1 = fw[-4]; float tmp2 = fw[-3]; float tmp3 = fw[-2]; float tmp4 = fw[-1]; fw[-4] = tmp1 + c1; fw[-3] = tmp2 + c2; fw[-2] = tmp3 + c3; fw[-1] = tmp4 + c4; fw += 8; } } } #endif /* */ /* Inverse 9-7 wavelet transform in 1-D. */ /* */ static void v4dwt_decode(v4dwt_t* restrict dwt) { int a, b; if (dwt->cas == 0) { if (dwt->dn <= 0 && dwt->sn <= 1) { return; } a = 0; b = 1; } else { if (dwt->sn <= 0 && dwt->dn <= 1) { return; } a = 1; b = 0; } v4* restrict waveleta = dwt->wavelet + a; v4* restrict waveletb = dwt->wavelet + b; #ifdef __SSE__ v4dwt_decode_step1_sse(waveleta, dwt->sn, _mm_set1_ps(K)); v4dwt_decode_step1_sse(waveletb, dwt->dn, _mm_set1_ps(c13318)); v4dwt_decode_step2_sse(waveletb, waveleta + 1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(dwt_delta)); v4dwt_decode_step2_sse(waveleta, waveletb + 1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_gamma)); v4dwt_decode_step2_sse(waveletb, waveleta + 1, dwt->sn, int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(dwt_beta)); v4dwt_decode_step2_sse(waveleta, waveletb + 1, dwt->dn, int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(dwt_alpha)); #else v4dwt_decode_step1(waveleta, dwt->sn, K); v4dwt_decode_step1(waveletb, dwt->dn, c13318); v4dwt_decode_step2(waveletb, waveleta + 1, dwt->sn, int_min(dwt->sn, dwt->dn-a), dwt_delta); v4dwt_decode_step2(waveleta, waveletb + 1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_gamma); v4dwt_decode_step2(waveletb, waveleta + 1, dwt->sn, int_min(dwt->sn, dwt->dn-a), dwt_beta); v4dwt_decode_step2(waveleta, waveletb + 1, dwt->dn, int_min(dwt->dn, dwt->sn-b), dwt_alpha); #endif } /* */ /* Inverse 9-7 wavelet transform in 2-D. */ /* */ void dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, int numres) { v4dwt_t h; v4dwt_t v; opj_tcd_resolution_t* res = tilec->resolutions; int rw = res->x1 - res->x0; /* width of the resolution level computed */ int rh = res->y1 - res->y0; /* height of the resolution level computed */ h.wavelet = (v4*)opj_aligned_malloc((dwt_decode_max_resolution(res, numres) + 5) * sizeof(v4)); if (!h.wavelet) { /* Memory allocation failure... */ return; } v.wavelet = h.wavelet; const int w = tilec->x1 - tilec->x0; const int four_w = w << 2; const int bufsize = w * (tilec->y1 - tilec->y0); while (--numres) { float* restrict aj = (float*)tilec->data; int bufleft = bufsize; h.sn = rw; v.sn = rh; ++res; rw = res->x1 - res->x0; /* width of the resolution level computed */ rh = res->y1 - res->y0; /* height of the resolution level computed */ h.dn = rw - h.sn; h.cas = res->x0 % 2; int j; for (j = rh; j > 3; j -= 4) { v4dwt_interleave_h(&h, aj, w, bufleft); v4dwt_decode(&h); int k; int kw; /* k + w * 1,2,3 */ for (k = rw; --k >= 0; ) { aj[k] = h.wavelet[k].f[0]; kw = k + w; aj[kw] = h.wavelet[k].f[1]; kw += w; aj[kw] = h.wavelet[k].f[2]; kw += w; aj[kw] = h.wavelet[k].f[3]; } aj += four_w; bufleft -= four_w; } j = rh & 0x03; if (j) { v4dwt_interleave_h(&h, aj, w, bufleft); v4dwt_decode(&h); int k; switch (j) { case 3: for (k = rw; --k >= 0; ) { aj[k + (w + w)] = h.wavelet[k].f[2]; aj[k + w] = h.wavelet[k].f[1]; aj[k] = h.wavelet[k].f[0]; } break; case 2: for (k = rw; --k >= 0; ) { aj[k + w] = h.wavelet[k].f[1]; aj[k] = h.wavelet[k].f[0]; } break; case 1: for (k = rw; --k >= 0; ) { aj[k] = h.wavelet[k].f[0]; } } } v.dn = rh - v.sn; v.cas = res->y0 % 2; aj = (float*)tilec->data; for (j = rw; j > 3; j -= 4) { v4dwt_interleave_v(&v, aj, w); v4dwt_decode(&v); int k; int kw = 0; /* k * w */ for (k = 0; k < rh; ++k) { memcpy(&aj[kw], &v.wavelet[k], 4 * sizeof(float)); kw += w; } aj += 4; } j = rw & 0x03; if (j) { v4dwt_interleave_v(&v, aj, w); v4dwt_decode(&v); int k; int kw = 0; /* k * w */ const int size = j * sizeof(float); for (k = 0; k < rh; ++k) { memcpy(&aj[kw], &v.wavelet[k], size); kw += w; } } } opj_aligned_free(h.wavelet); }