// Boost.Polygon library detail/voronoi_robust_fpt.hpp header file // Copyright Andrii Sydorchuk 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT #define BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT #include #include // Geometry predicates with floating-point variables usually require // high-precision predicates to retrieve the correct result. // Epsilon robust predicates give the result within some epsilon relative // error, but are a lot faster than high-precision predicates. // To make algorithm robust and efficient epsilon robust predicates are // used at the first step. In case of the undefined result high-precision // arithmetic is used to produce required robustness. This approach // requires exact computation of epsilon intervals within which epsilon // robust predicates have undefined value. // There are two ways to measure an error of floating-point calculations: // relative error and ULPs (units in the last place). // Let EPS be machine epsilon, then next inequalities have place: // 1 EPS <= 1 ULP <= 2 EPS (1), 0.5 ULP <= 1 EPS <= 1 ULP (2). // ULPs are good for measuring rounding errors and comparing values. // Relative errors are good for computation of general relative // error of formulas or expressions. So to calculate epsilon // interval within which epsilon robust predicates have undefined result // next schema is used: // 1) Compute rounding errors of initial variables using ULPs; // 2) Transform ULPs to epsilons using upper bound of the (1); // 3) Compute relative error of the formula using epsilon arithmetic; // 4) Transform epsilon to ULPs using upper bound of the (2); // In case two values are inside undefined ULP range use high-precision // arithmetic to produce the correct result, else output the result. // Look at almost_equal function to see how two floating-point variables // are checked to fit in the ULP range. // If A has relative error of r(A) and B has relative error of r(B) then: // 1) r(A + B) <= max(r(A), r(B)), for A * B >= 0; // 2) r(A - B) <= B*r(A)+A*r(B)/(A-B), for A * B >= 0; // 2) r(A * B) <= r(A) + r(B); // 3) r(A / B) <= r(A) + r(B); // In addition rounding error should be added, that is always equal to // 0.5 ULP or at most 1 epsilon. As you might see from the above formulas // subtraction relative error may be extremely large, that's why // epsilon robust comparator class is used to store floating point values // and compute subtraction as the final step of the evaluation. // For further information about relative errors and ULPs try this link: // http://docs.sun.com/source/806-3568/ncg_goldberg.html namespace boost { namespace polygon { namespace detail { template T get_sqrt(const T& that) { return (std::sqrt)(that); } template bool is_pos(const T& that) { return that > 0; } template bool is_neg(const T& that) { return that < 0; } template bool is_zero(const T& that) { return that == 0; } template class robust_fpt { public: typedef _fpt floating_point_type; typedef _fpt relative_error_type; // Rounding error is at most 1 EPS. enum { ROUNDING_ERROR = 1 }; robust_fpt() : fpv_(0.0), re_(0.0) {} explicit robust_fpt(floating_point_type fpv) : fpv_(fpv), re_(0.0) {} robust_fpt(floating_point_type fpv, relative_error_type error) : fpv_(fpv), re_(error) {} floating_point_type fpv() const { return fpv_; } relative_error_type re() const { return re_; } relative_error_type ulp() const { return re_; } bool has_pos_value() const { return is_pos(fpv_); } bool has_neg_value() const { return is_neg(fpv_); } bool has_zero_value() const { return is_zero(fpv_); } robust_fpt operator-() const { return robust_fpt(-fpv_, re_); } robust_fpt& operator+=(const robust_fpt& that) { floating_point_type fpv = this->fpv_ + that.fpv_; if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) || (!is_pos(this->fpv_) && !is_pos(that.fpv_))) { this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR; } else { floating_point_type temp = (this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv; if (is_neg(temp)) temp = -temp; this->re_ = temp + ROUNDING_ERROR; } this->fpv_ = fpv; return *this; } robust_fpt& operator-=(const robust_fpt& that) { floating_point_type fpv = this->fpv_ - that.fpv_; if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) || (!is_pos(this->fpv_) && !is_neg(that.fpv_))) { this->re_ = (std::max)(this->re_, that.re_) + ROUNDING_ERROR; } else { floating_point_type temp = (this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv; if (is_neg(temp)) temp = -temp; this->re_ = temp + ROUNDING_ERROR; } this->fpv_ = fpv; return *this; } robust_fpt& operator*=(const robust_fpt& that) { this->re_ += that.re_ + ROUNDING_ERROR; this->fpv_ *= that.fpv_; return *this; } robust_fpt& operator/=(const robust_fpt& that) { this->re_ += that.re_ + ROUNDING_ERROR; this->fpv_ /= that.fpv_; return *this; } robust_fpt operator+(const robust_fpt& that) const { floating_point_type fpv = this->fpv_ + that.fpv_; relative_error_type re; if ((!is_neg(this->fpv_) && !is_neg(that.fpv_)) || (!is_pos(this->fpv_) && !is_pos(that.fpv_))) { re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR; } else { floating_point_type temp = (this->fpv_ * this->re_ - that.fpv_ * that.re_) / fpv; if (is_neg(temp)) temp = -temp; re = temp + ROUNDING_ERROR; } return robust_fpt(fpv, re); } robust_fpt operator-(const robust_fpt& that) const { floating_point_type fpv = this->fpv_ - that.fpv_; relative_error_type re; if ((!is_neg(this->fpv_) && !is_pos(that.fpv_)) || (!is_pos(this->fpv_) && !is_neg(that.fpv_))) { re = (std::max)(this->re_, that.re_) + ROUNDING_ERROR; } else { floating_point_type temp = (this->fpv_ * this->re_ + that.fpv_ * that.re_) / fpv; if (is_neg(temp)) temp = -temp; re = temp + ROUNDING_ERROR; } return robust_fpt(fpv, re); } robust_fpt operator*(const robust_fpt& that) const { floating_point_type fpv = this->fpv_ * that.fpv_; relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR; return robust_fpt(fpv, re); } robust_fpt operator/(const robust_fpt& that) const { floating_point_type fpv = this->fpv_ / that.fpv_; relative_error_type re = this->re_ + that.re_ + ROUNDING_ERROR; return robust_fpt(fpv, re); } robust_fpt sqrt() const { return robust_fpt(get_sqrt(fpv_), re_ * static_cast(0.5) + ROUNDING_ERROR); } private: floating_point_type fpv_; relative_error_type re_; }; template robust_fpt get_sqrt(const robust_fpt& that) { return that.sqrt(); } template bool is_pos(const robust_fpt& that) { return that.has_pos_value(); } template bool is_neg(const robust_fpt& that) { return that.has_neg_value(); } template bool is_zero(const robust_fpt& that) { return that.has_zero_value(); } // robust_dif consists of two not negative values: value1 and value2. // The resulting expression is equal to the value1 - value2. // Subtraction of a positive value is equivalent to the addition to value2 // and subtraction of a negative value is equivalent to the addition to // value1. The structure implicitly avoids difference computation. template class robust_dif { public: robust_dif() : positive_sum_(0), negative_sum_(0) {} explicit robust_dif(const T& value) : positive_sum_((value > 0)?value:0), negative_sum_((value < 0)?-value:0) {} robust_dif(const T& pos, const T& neg) : positive_sum_(pos), negative_sum_(neg) {} T dif() const { return positive_sum_ - negative_sum_; } T pos() const { return positive_sum_; } T neg() const { return negative_sum_; } robust_dif operator-() const { return robust_dif(negative_sum_, positive_sum_); } robust_dif& operator+=(const T& val) { if (!is_neg(val)) positive_sum_ += val; else negative_sum_ -= val; return *this; } robust_dif& operator+=(const robust_dif& that) { positive_sum_ += that.positive_sum_; negative_sum_ += that.negative_sum_; return *this; } robust_dif& operator-=(const T& val) { if (!is_neg(val)) negative_sum_ += val; else positive_sum_ -= val; return *this; } robust_dif& operator-=(const robust_dif& that) { positive_sum_ += that.negative_sum_; negative_sum_ += that.positive_sum_; return *this; } robust_dif& operator*=(const T& val) { if (!is_neg(val)) { positive_sum_ *= val; negative_sum_ *= val; } else { positive_sum_ *= -val; negative_sum_ *= -val; swap(); } return *this; } robust_dif& operator*=(const robust_dif& that) { T positive_sum = this->positive_sum_ * that.positive_sum_ + this->negative_sum_ * that.negative_sum_; T negative_sum = this->positive_sum_ * that.negative_sum_ + this->negative_sum_ * that.positive_sum_; positive_sum_ = positive_sum; negative_sum_ = negative_sum; return *this; } robust_dif& operator/=(const T& val) { if (!is_neg(val)) { positive_sum_ /= val; negative_sum_ /= val; } else { positive_sum_ /= -val; negative_sum_ /= -val; swap(); } return *this; } private: void swap() { (std::swap)(positive_sum_, negative_sum_); } T positive_sum_; T negative_sum_; }; template robust_dif operator+(const robust_dif& lhs, const robust_dif& rhs) { return robust_dif(lhs.pos() + rhs.pos(), lhs.neg() + rhs.neg()); } template robust_dif operator+(const robust_dif& lhs, const T& rhs) { if (!is_neg(rhs)) { return robust_dif(lhs.pos() + rhs, lhs.neg()); } else { return robust_dif(lhs.pos(), lhs.neg() - rhs); } } template robust_dif operator+(const T& lhs, const robust_dif& rhs) { if (!is_neg(lhs)) { return robust_dif(lhs + rhs.pos(), rhs.neg()); } else { return robust_dif(rhs.pos(), rhs.neg() - lhs); } } template robust_dif operator-(const robust_dif& lhs, const robust_dif& rhs) { return robust_dif(lhs.pos() + rhs.neg(), lhs.neg() + rhs.pos()); } template robust_dif operator-(const robust_dif& lhs, const T& rhs) { if (!is_neg(rhs)) { return robust_dif(lhs.pos(), lhs.neg() + rhs); } else { return robust_dif(lhs.pos() - rhs, lhs.neg()); } } template robust_dif operator-(const T& lhs, const robust_dif& rhs) { if (!is_neg(lhs)) { return robust_dif(lhs + rhs.neg(), rhs.pos()); } else { return robust_dif(rhs.neg(), rhs.pos() - lhs); } } template robust_dif operator*(const robust_dif& lhs, const robust_dif& rhs) { T res_pos = lhs.pos() * rhs.pos() + lhs.neg() * rhs.neg(); T res_neg = lhs.pos() * rhs.neg() + lhs.neg() * rhs.pos(); return robust_dif(res_pos, res_neg); } template robust_dif operator*(const robust_dif& lhs, const T& val) { if (!is_neg(val)) { return robust_dif(lhs.pos() * val, lhs.neg() * val); } else { return robust_dif(-lhs.neg() * val, -lhs.pos() * val); } } template robust_dif operator*(const T& val, const robust_dif& rhs) { if (!is_neg(val)) { return robust_dif(val * rhs.pos(), val * rhs.neg()); } else { return robust_dif(-val * rhs.neg(), -val * rhs.pos()); } } template robust_dif operator/(const robust_dif& lhs, const T& val) { if (!is_neg(val)) { return robust_dif(lhs.pos() / val, lhs.neg() / val); } else { return robust_dif(-lhs.neg() / val, -lhs.pos() / val); } } // Used to compute expressions that operate with sqrts with predefined // relative error. Evaluates expressions of the next type: // sum(i = 1 .. n)(A[i] * sqrt(B[i])), 1 <= n <= 4. template class robust_sqrt_expr { public: enum MAX_RELATIVE_ERROR { MAX_RELATIVE_ERROR_EVAL1 = 4, MAX_RELATIVE_ERROR_EVAL2 = 7, MAX_RELATIVE_ERROR_EVAL3 = 16, MAX_RELATIVE_ERROR_EVAL4 = 25 }; // Evaluates expression (re = 4 EPS): // A[0] * sqrt(B[0]). _fpt eval1(_int* A, _int* B) { _fpt a = convert(A[0]); _fpt b = convert(B[0]); return a * get_sqrt(b); } // Evaluates expression (re = 7 EPS): // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]). _fpt eval2(_int* A, _int* B) { _fpt a = eval1(A, B); _fpt b = eval1(A + 1, B + 1); if ((!is_neg(a) && !is_neg(b)) || (!is_pos(a) && !is_pos(b))) return a + b; return convert(A[0] * A[0] * B[0] - A[1] * A[1] * B[1]) / (a - b); } // Evaluates expression (re = 16 EPS): // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) + A[2] * sqrt(B[2]). _fpt eval3(_int* A, _int* B) { _fpt a = eval2(A, B); _fpt b = eval1(A + 2, B + 2); if ((!is_neg(a) && !is_neg(b)) || (!is_pos(a) && !is_pos(b))) return a + b; tA[3] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] - A[2] * A[2] * B[2]; tB[3] = 1; tA[4] = A[0] * A[1] * 2; tB[4] = B[0] * B[1]; return eval2(tA + 3, tB + 3) / (a - b); } // Evaluates expression (re = 25 EPS): // A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) + // A[2] * sqrt(B[2]) + A[3] * sqrt(B[3]). _fpt eval4(_int* A, _int* B) { _fpt a = eval2(A, B); _fpt b = eval2(A + 2, B + 2); if ((!is_neg(a) && !is_neg(b)) || (!is_pos(a) && !is_pos(b))) return a + b; tA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] - A[2] * A[2] * B[2] - A[3] * A[3] * B[3]; tB[0] = 1; tA[1] = A[0] * A[1] * 2; tB[1] = B[0] * B[1]; tA[2] = A[2] * A[3] * -2; tB[2] = B[2] * B[3]; return eval3(tA, tB) / (a - b); } private: _int tA[5]; _int tB[5]; _converter convert; }; } // detail } // polygon } // boost #endif // BOOST_POLYGON_DETAIL_VORONOI_ROBUST_FPT