//////////////////////////////////////////////////////////////// // Copyright 2012 - 2022 John Maddock. // Copyright 2022 Christopher Kormanyos. // Distributed under the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt // or copy at https://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MP_CPP_INT_HPP #define BOOST_MP_CPP_INT_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace multiprecision { #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable : 4307) // integral constant overflow (oveflow is in a branch not taken when it would overflow) #pragma warning(disable : 4127) // conditional expression is constant #pragma warning(disable : 4702) // Unreachable code (reachability depends on template params) #endif #if defined(__GNUC__) && !defined(__clang__) // see https://github.com/boostorg/multiprecision/issues/413 // and https://github.com/boostorg/multiprecision/issues/431 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif namespace detail { template struct is_byte_container > : public std::false_type {}; } // namespace detail namespace backends { namespace detail { template struct static_unsigned_max { static constexpr std::size_t value = (Value1 > Value2) ? Value1 : Value2; }; } // Namespace detail template struct cpp_int_base; // // Traits class determines the maximum and minimum precision values: // template struct max_precision; template struct max_precision > { static constexpr std::size_t value = std::is_void::value ? detail::static_unsigned_max::value : (((MaxBits >= MinBits) && MaxBits) ? MaxBits : SIZE_MAX); }; template struct min_precision; template struct min_precision > { static constexpr std::size_t value = (std::is_void::value ? detail::static_unsigned_max::value : MinBits); }; // // Traits class determines whether the number of bits precision requested could fit in a native type, // we call this a "trivial" cpp_int: // template struct is_trivial_cpp_int { static constexpr bool value = false; }; template struct is_trivial_cpp_int > { using self = cpp_int_backend; static constexpr bool value = std::is_void::value && (max_precision::value <= (sizeof(double_limb_type) * CHAR_BIT) - (SignType == signed_packed ? 1 : 0)); }; template struct is_trivial_cpp_int > { static constexpr bool value = true; }; } // namespace backends // // Traits class to determine whether a cpp_int_backend is signed or not: // template struct is_unsigned_number > : public std::integral_constant {}; namespace backends { // // Traits class determines whether T should be implicitly convertible to U, or // whether the constructor should be made explicit. The latter happens if we // are losing the sign, or have fewer digits precision in the target type: // template struct is_implicit_cpp_int_conversion; template struct is_implicit_cpp_int_conversion, cpp_int_backend > { using t1 = cpp_int_backend; using t2 = cpp_int_backend; static constexpr bool value = (is_signed_number::value || !is_signed_number::value) && (max_precision::value <= max_precision::value); }; // // Traits class to determine whether operations on a cpp_int may throw: // template struct is_non_throwing_cpp_int : public std::integral_constant {}; template struct is_non_throwing_cpp_int > : public std::integral_constant {}; // // Traits class, determines whether the cpp_int is fixed precision or not: // template struct is_fixed_precision; template struct is_fixed_precision > : public std::integral_constant >::value != SIZE_MAX> {}; namespace detail { inline BOOST_MP_CXX14_CONSTEXPR void verify_new_size(std::size_t new_size, std::size_t min_size, const std::integral_constant&) { if (new_size < min_size) BOOST_MP_THROW_EXCEPTION(std::overflow_error("Unable to allocate sufficient storage for the value of the result: value overflows the maximum allowable magnitude.")); } inline BOOST_MP_CXX14_CONSTEXPR void verify_new_size(std::size_t /*new_size*/, std::size_t /*min_size*/, const std::integral_constant&) {} template inline BOOST_MP_CXX14_CONSTEXPR void verify_limb_mask(bool b, U limb, U mask, const std::integral_constant&) { // When we mask out "limb" with "mask", do we loose bits? If so it's an overflow error: if (b && (limb & ~mask)) BOOST_MP_THROW_EXCEPTION(std::overflow_error("Overflow in cpp_int arithmetic: there is insufficient precision in the target type to hold all of the bits of the result.")); } template inline BOOST_MP_CXX14_CONSTEXPR void verify_limb_mask(bool /*b*/, U /*limb*/, U /*mask*/, const std::integral_constant&) {} } // namespace detail // // Now define the various data layouts that are possible as partial specializations of the base class, // starting with the default arbitrary precision signed integer type: // template struct cpp_int_base : private boost::multiprecision::detail::empty_value::type> { template friend struct cpp_int_base; using allocator_type = typename detail::rebind::type; using limb_pointer = typename std::allocator_traits::pointer ; using const_limb_pointer = typename std::allocator_traits::const_pointer; using checked_type = std::integral_constant; // // Interface invariants: // static_assert(!std::is_void::value, "Allocator must not be void here"); using base_type = boost::multiprecision::detail::empty_value; private: struct limb_data { std::size_t capacity; limb_pointer data; }; public: static constexpr std::size_t limb_bits = sizeof(limb_type) * CHAR_BIT; static constexpr limb_type max_limb_value = ~static_cast(0u); static constexpr limb_type sign_bit_mask = static_cast(1u) << (limb_bits - 1); static constexpr std::size_t internal_limb_count = MinBits ? (MinBits / limb_bits + ((MinBits % limb_bits) ? 1 : 0)) : (sizeof(limb_data) / sizeof(limb_type)) > 1 ? (sizeof(limb_data) / sizeof(limb_type)) : 2; private: union data_type { limb_data ld; limb_type la[internal_limb_count]; limb_type first; double_limb_type double_first; constexpr data_type() noexcept : first(0) {} constexpr data_type(limb_type i) noexcept : first(i) {} constexpr data_type(signed_limb_type i) noexcept : first(static_cast(boost::multiprecision::detail::unsigned_abs(i))) {} #if BOOST_MP_ENDIAN_LITTLE_BYTE constexpr data_type(double_limb_type i) noexcept : double_first(i) {} constexpr data_type(signed_double_limb_type i) noexcept : double_first(static_cast(boost::multiprecision::detail::unsigned_abs(i))) {} #endif #if !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) && !(defined(BOOST_MSVC) && (BOOST_MSVC < 1900)) constexpr data_type(limb_type* limbs, std::size_t len) noexcept : ld{ len, limbs } {} #else constexpr data_type(limb_type* limbs, std::size_t len) noexcept { ld.capacity = len; ld.data = limbs; } #endif }; data_type m_data; std::size_t m_limbs; bool m_sign, m_internal, m_alias; public: // // Direct construction: // BOOST_MP_FORCEINLINE constexpr cpp_int_base(limb_type i) noexcept : m_data(i), m_limbs(1), m_sign(false), m_internal(true), m_alias(false) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(signed_limb_type i) noexcept : m_data(i), m_limbs(1), m_sign(i < 0), m_internal(true), m_alias(false) {} #if BOOST_MP_ENDIAN_LITTLE_BYTE && !defined(BOOST_MP_TEST_NO_LE) BOOST_MP_FORCEINLINE constexpr cpp_int_base(double_limb_type i) noexcept : m_data(i), m_limbs(i > max_limb_value ? 2 : 1), m_sign(false), m_internal(true), m_alias(false) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(signed_double_limb_type i) noexcept : m_data(i), m_limbs(i < 0 ? (static_cast(boost::multiprecision::detail::unsigned_abs(i)) > static_cast(max_limb_value) ? 2 : 1) : (i > max_limb_value ? 2 : 1)), m_sign(i < 0), m_internal(true), m_alias(false) {} #endif // // Aliasing constructor aliases data: // struct scoped_shared_storage : private boost::multiprecision::detail::empty_value { private: limb_type* data; std::size_t capacity; std::size_t allocated; bool is_alias; allocator_type& allocator() noexcept { return boost::multiprecision::detail::empty_value::get(); } public: scoped_shared_storage(const allocator_type& a, std::size_t len) : boost::multiprecision::detail::empty_value(boost::multiprecision::detail::empty_init_t(), a), capacity(len), allocated(0), is_alias(false) { data = allocator().allocate(len); } scoped_shared_storage(const cpp_int_base& i, std::size_t len) : boost::multiprecision::detail::empty_value(boost::multiprecision::detail::empty_init_t(), i.allocator()), capacity(len), allocated(0), is_alias(false) { data = allocator().allocate(len); } scoped_shared_storage(limb_type* limbs, std::size_t n) : data(limbs), capacity(n), allocated(0), is_alias(true) {} ~scoped_shared_storage() { if(!is_alias) allocator().deallocate(data, capacity); } limb_type* allocate(std::size_t n) noexcept { limb_type* result = data + allocated; allocated += n; BOOST_MP_ASSERT(allocated <= capacity); return result; } void deallocate(std::size_t n) { BOOST_MP_ASSERT(n <= allocated); allocated -= n; } }; explicit constexpr cpp_int_base(limb_type* data, std::size_t offset, std::size_t len) noexcept : m_data(data + offset, len), m_limbs(len), m_sign(false), m_internal(false), m_alias(true) {} // This next constructor is for constructing const objects from const limb_type*'s only. // Unfortunately we appear to have no way to assert that within the language, and the const_cast // is a side effect of that :( explicit constexpr cpp_int_base(const limb_type* data, std::size_t offset, std::size_t len) noexcept : m_data(const_cast(data) + offset, len), m_limbs(len), m_sign(false), m_internal(false), m_alias(true) {} explicit cpp_int_base(scoped_shared_storage& data, std::size_t len) noexcept : m_data(data.allocate(len), len), m_limbs(len), m_sign(false), m_internal(false), m_alias(true) {} // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE allocator_type& allocator() noexcept { return base_type::get(); } BOOST_MP_FORCEINLINE const allocator_type& allocator() const noexcept { return base_type::get(); } BOOST_MP_FORCEINLINE std::size_t size() const noexcept { return m_limbs; } BOOST_MP_FORCEINLINE limb_pointer limbs() noexcept { return m_internal ? m_data.la : m_data.ld.data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs() const noexcept { return m_internal ? m_data.la : m_data.ld.data; } BOOST_MP_FORCEINLINE std::size_t capacity() const noexcept { return m_internal ? internal_limb_count : m_data.ld.capacity; } BOOST_MP_FORCEINLINE bool sign() const noexcept { return m_sign; } void sign(bool b) noexcept { m_sign = b; // Check for zero value: if (m_sign && (m_limbs == 1)) { if (limbs()[0] == 0) m_sign = false; } } void resize(std::size_t new_size, std::size_t min_size) { constexpr std::size_t max_limbs = MaxBits / (CHAR_BIT * sizeof(limb_type)) + ((MaxBits % (CHAR_BIT * sizeof(limb_type))) ? 1 : 0); // We never resize beyond MaxSize: if (new_size > max_limbs) new_size = max_limbs; detail::verify_new_size(new_size, min_size, checked_type()); // See if we have enough capacity already: std::size_t cap = capacity(); if (new_size > cap) { // We must not be an alias, memory allocation here defeats the whole point of aliasing: BOOST_MP_ASSERT(!m_alias); // Allocate a new buffer and copy everything over: cap = (std::min)((std::max)(cap * 4, new_size), max_limbs); limb_pointer pl = allocator().allocate(cap); std::memcpy(pl, limbs(), size() * sizeof(limbs()[0])); if (!m_internal && !m_alias) allocator().deallocate(limbs(), capacity()); else m_internal = false; m_limbs = new_size; m_data.ld.capacity = cap; m_data.ld.data = pl; } else { m_limbs = new_size; } } BOOST_MP_FORCEINLINE void normalize() noexcept { limb_pointer p = limbs(); while ((m_limbs - 1) && !p[m_limbs - 1]) --m_limbs; } BOOST_MP_FORCEINLINE constexpr cpp_int_base() noexcept : m_data(), m_limbs(1), m_sign(false), m_internal(true), m_alias(false){} BOOST_MP_FORCEINLINE cpp_int_base(const cpp_int_base& o) : base_type(o), m_limbs(o.m_alias ? o.m_limbs : 0), m_sign(o.m_sign), m_internal(o.m_alias ? false : true), m_alias(o.m_alias) { if (m_alias) { m_data.ld = o.m_data.ld; } else { resize(o.size(), o.size()); std::memcpy(limbs(), o.limbs(), o.size() * sizeof(limbs()[0])); } } // rvalue copy: cpp_int_base(cpp_int_base&& o) : base_type(static_cast(o)), m_limbs(o.m_limbs), m_sign(o.m_sign), m_internal(o.m_internal), m_alias(o.m_alias) { if (m_internal) { std::memcpy(limbs(), o.limbs(), o.size() * sizeof(limbs()[0])); } else { m_data.ld = o.m_data.ld; o.m_limbs = 0; o.m_internal = true; } } cpp_int_base& operator=(cpp_int_base&& o) noexcept { if (!m_internal && !m_alias) allocator().deallocate(m_data.ld.data, m_data.ld.capacity); *static_cast(this) = static_cast(o); m_limbs = o.m_limbs; m_sign = o.m_sign; m_internal = o.m_internal; m_alias = o.m_alias; if (m_internal) { std::memcpy(limbs(), o.limbs(), o.size() * sizeof(limbs()[0])); } else { m_data.ld = o.m_data.ld; o.m_limbs = 0; o.m_internal = true; } return *this; } template cpp_int_base& operator=(cpp_int_base&& o) noexcept { if(o.m_internal) { m_sign = o.m_sign; this->resize(o.size(), o.size()); std::memcpy(this->limbs(), o.limbs(), o.size() * sizeof(*(o.limbs()))); return *this; } if (!m_internal && !m_alias) allocator().deallocate(m_data.ld.data, m_data.ld.capacity); *static_cast(this) = static_cast::base_type&&>(o); m_limbs = o.m_limbs; m_sign = o.m_sign; m_internal = o.m_internal; m_alias = o.m_alias; m_data.ld.capacity = o.m_data.ld.capacity; m_data.ld.data = o.limbs(); o.m_limbs = 0; o.m_internal = true; return *this; } BOOST_MP_FORCEINLINE ~cpp_int_base() noexcept { if (!m_internal && !m_alias) allocator().deallocate(limbs(), capacity()); } void assign(const cpp_int_base& o) { if (this != &o) { static_cast(*this) = static_cast(o); m_limbs = 0; resize(o.size(), o.size()); std::memcpy(limbs(), o.limbs(), o.size() * sizeof(limbs()[0])); m_sign = o.m_sign; } } BOOST_MP_FORCEINLINE void negate() noexcept { m_sign = !m_sign; // Check for zero value: if (m_sign && (m_limbs == 1)) { if (limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE bool isneg() const noexcept { return m_sign; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) noexcept { std::swap(m_data, o.m_data); std::swap(m_sign, o.m_sign); std::swap(m_internal, o.m_internal); std::swap(m_limbs, o.m_limbs); std::swap(m_alias, o.m_alias); } protected: template void check_in_range(const A&) noexcept {} }; template constexpr std::size_t cpp_int_base::limb_bits; template constexpr limb_type cpp_int_base::max_limb_value; template constexpr limb_type cpp_int_base::sign_bit_mask; template constexpr std::size_t cpp_int_base::internal_limb_count; template struct cpp_int_base : private boost::multiprecision::detail::empty_value::type> { // // There is currently no support for unsigned arbitrary precision arithmetic, largely // because it's not clear what subtraction should do: // static_assert(((sizeof(Allocator) == 0) && !std::is_void::value), "There is curently no support for unsigned arbitrary precision integers."); }; // // Fixed precision (i.e. no allocator), signed-magnitude type with limb-usage count: // template struct cpp_int_base { using limb_pointer = limb_type* ; using const_limb_pointer = const limb_type* ; using checked_type = std::integral_constant; struct scoped_shared_storage { BOOST_MP_CXX14_CONSTEXPR scoped_shared_storage(const cpp_int_base&, std::size_t) {} BOOST_MP_CXX14_CONSTEXPR void deallocate(std::size_t) {} }; // // Interface invariants: // static_assert(MinBits > sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); public: static constexpr std::size_t limb_bits = sizeof(limb_type) * CHAR_BIT; static constexpr limb_type max_limb_value = ~static_cast(0u); static constexpr limb_type sign_bit_mask = static_cast(1u) << (limb_bits - 1); static constexpr std::size_t internal_limb_count = MinBits / limb_bits + ((MinBits % limb_bits) ? 1 : 0); static constexpr limb_type upper_limb_mask = (MinBits % limb_bits) ? (limb_type(1) << (MinBits % limb_bits)) - 1 : (~limb_type(0)); static_assert(internal_limb_count >= 2, "A fixed precision integer type must have at least 2 limbs"); private: union data_type { limb_type m_data[internal_limb_count]; limb_type m_first_limb; double_limb_type m_double_first_limb; constexpr data_type() : m_data{0} {} constexpr data_type(limb_type i) : m_data{i} {} #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION constexpr data_type(limb_type i, limb_type j) : m_data{i, j} {} #endif constexpr data_type(double_limb_type i) : m_double_first_limb(i) { #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION if (BOOST_MP_IS_CONST_EVALUATED(m_double_first_limb)) { data_type t(static_cast(i & max_limb_value), static_cast(i >> limb_bits)); *this = t; } #endif } template constexpr data_type(literals::detail::value_pack) : m_data{VALUES...} {} } m_wrapper; std::uint16_t m_limbs; bool m_sign; public: // // Direct construction: // BOOST_MP_FORCEINLINE constexpr cpp_int_base(limb_type i) noexcept : m_wrapper(i), m_limbs(1), m_sign(false) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(signed_limb_type i) noexcept : m_wrapper(limb_type(i < 0 ? static_cast(-static_cast(i)) : i)), m_limbs(1), m_sign(i < 0) {} #if BOOST_MP_ENDIAN_LITTLE_BYTE && !defined(BOOST_MP_TEST_NO_LE) BOOST_MP_FORCEINLINE constexpr cpp_int_base(double_limb_type i) noexcept : m_wrapper(i), m_limbs(i > max_limb_value ? 2 : 1), m_sign(false) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(signed_double_limb_type i) noexcept : m_wrapper(double_limb_type(i < 0 ? static_cast(boost::multiprecision::detail::unsigned_abs(i)) : i)), m_limbs(i < 0 ? (static_cast(boost::multiprecision::detail::unsigned_abs(i)) > max_limb_value ? 2 : 1) : (i > max_limb_value ? 2 : 1)), m_sign(i < 0) {} #endif template constexpr cpp_int_base(literals::detail::value_pack i) : m_wrapper(i), m_limbs(sizeof...(VALUES)), m_sign(false) {} constexpr cpp_int_base(literals::detail::value_pack<> i) : m_wrapper(i), m_limbs(1), m_sign(false) {} constexpr cpp_int_base(const cpp_int_base& a, const literals::detail::negate_tag&) : m_wrapper(a.m_wrapper), m_limbs(a.m_limbs), m_sign((a.m_limbs == 1) && (*a.limbs() == 0) ? false : !a.m_sign) {} explicit constexpr cpp_int_base(scoped_shared_storage&, std::size_t) noexcept : m_wrapper(), m_limbs(0), m_sign(false) {} // // These are deprecated in C++20 unless we make them explicit: // BOOST_MP_CXX14_CONSTEXPR cpp_int_base& operator=(const cpp_int_base&) = default; // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE constexpr std::size_t size() const noexcept { return m_limbs; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR limb_pointer limbs() noexcept { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE constexpr const_limb_pointer limbs() const noexcept { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE constexpr bool sign() const noexcept { return m_sign; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void sign(bool b) noexcept { m_sign = b; // Check for zero value: if (m_sign && (m_limbs == 1)) { if (limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void resize(std::size_t new_size, std::size_t min_size) noexcept((Checked == unchecked)) { m_limbs = static_cast((std::min)(new_size, internal_limb_count)); detail::verify_new_size(m_limbs, min_size, checked_type()); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void normalize() noexcept((Checked == unchecked)) { limb_pointer p = limbs(); detail::verify_limb_mask(m_limbs == internal_limb_count, p[m_limbs - 1], upper_limb_mask, checked_type()); p[internal_limb_count - 1] &= upper_limb_mask; while ((m_limbs - 1) && !p[m_limbs - 1]) --m_limbs; if ((m_limbs == 1) && (!*p)) m_sign = false; // zero is always unsigned } BOOST_MP_FORCEINLINE constexpr cpp_int_base() noexcept : m_wrapper(limb_type(0u)), m_limbs(1), m_sign(false) {} // Not defaulted, it breaks constexpr support in the Intel compiler for some reason: BOOST_MP_FORCEINLINE constexpr cpp_int_base(const cpp_int_base& o) noexcept : m_wrapper(o.m_wrapper), m_limbs(o.m_limbs), m_sign(o.m_sign) {} // Defaulted functions: //~cpp_int_base() noexcept {} void BOOST_MP_CXX14_CONSTEXPR assign(const cpp_int_base& o) noexcept { if (this != &o) { m_limbs = o.m_limbs; #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION if (BOOST_MP_IS_CONST_EVALUATED(m_limbs)) { for (std::size_t i = 0; i < m_limbs; ++i) limbs()[i] = o.limbs()[i]; } else #endif std::memcpy(limbs(), o.limbs(), o.size() * sizeof(o.limbs()[0])); m_sign = o.m_sign; } } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void negate() noexcept { m_sign = !m_sign; // Check for zero value: if (m_sign && (m_limbs == 1)) { if (limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR bool isneg() const noexcept { return m_sign; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void do_swap(cpp_int_base& o) noexcept { for (std::size_t i = 0; i < (std::max)(size(), o.size()); ++i) std_constexpr::swap(m_wrapper.m_data[i], o.m_wrapper.m_data[i]); std_constexpr::swap(m_sign, o.m_sign); std_constexpr::swap(m_limbs, o.m_limbs); } protected: template BOOST_MP_CXX14_CONSTEXPR void check_in_range(const A&) noexcept {} }; template constexpr std::size_t cpp_int_base::limb_bits; template constexpr limb_type cpp_int_base::max_limb_value; template constexpr limb_type cpp_int_base::sign_bit_mask; template constexpr std::size_t cpp_int_base::internal_limb_count; // // Fixed precision (i.e. no allocator), unsigned type with limb-usage count: // template struct cpp_int_base { using limb_pointer = limb_type* ; using const_limb_pointer = const limb_type* ; using checked_type = std::integral_constant; struct scoped_shared_storage { BOOST_MP_CXX14_CONSTEXPR scoped_shared_storage(const cpp_int_base&, std::size_t) {} BOOST_MP_CXX14_CONSTEXPR void deallocate(std::size_t) {} }; // // Interface invariants: // static_assert(MinBits > sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); public: static constexpr std::size_t limb_bits = sizeof(limb_type) * CHAR_BIT; static constexpr limb_type max_limb_value = ~static_cast(0u); static constexpr limb_type sign_bit_mask = static_cast(1u) << (limb_bits - 1); static constexpr std::size_t internal_limb_count = MinBits / limb_bits + ((MinBits % limb_bits) ? 1 : 0); static constexpr limb_type upper_limb_mask = (MinBits % limb_bits) ? (limb_type(1) << (MinBits % limb_bits)) - 1 : (~limb_type(0)); static_assert(internal_limb_count >= 2, "A fixed precision integer type must have at least 2 limbs"); private: union data_type { limb_type m_data[internal_limb_count]; limb_type m_first_limb; double_limb_type m_double_first_limb; constexpr data_type() : m_data{0} {} constexpr data_type(limb_type i) : m_data{i} {} #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION constexpr data_type(limb_type i, limb_type j) : m_data{i, j} {} #endif constexpr data_type(double_limb_type i) : m_double_first_limb(i) { #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION if (BOOST_MP_IS_CONST_EVALUATED(m_double_first_limb)) { data_type t(static_cast(i & max_limb_value), static_cast(i >> limb_bits)); *this = t; } #endif } template constexpr data_type(literals::detail::value_pack) : m_data{VALUES...} {} } m_wrapper; std::size_t m_limbs; public: // // Direct construction: // BOOST_MP_FORCEINLINE constexpr cpp_int_base(limb_type i) noexcept : m_wrapper(i), m_limbs(1) {} BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(signed_limb_type i) noexcept((Checked == unchecked)) : m_wrapper(static_cast(boost::multiprecision::detail::unsigned_abs(i))), m_limbs(1) { if (i < 0) negate(); } #if BOOST_MP_ENDIAN_LITTLE_BYTE && !defined(BOOST_MP_TEST_NO_LE) BOOST_MP_FORCEINLINE constexpr cpp_int_base(double_limb_type i) noexcept : m_wrapper(i), m_limbs(i > max_limb_value ? 2 : 1) {} BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(signed_double_limb_type i) noexcept((Checked == unchecked)) : m_wrapper(double_limb_type(i < 0 ? static_cast(boost::multiprecision::detail::unsigned_abs(i)) : i)), m_limbs(i < 0 ? (static_cast(boost::multiprecision::detail::unsigned_abs(i)) > max_limb_value ? 2 : 1) : (i > max_limb_value ? 2 : 1)) { if (i < 0) negate(); } #endif template constexpr cpp_int_base(literals::detail::value_pack i) : m_wrapper(i), m_limbs(sizeof...(VALUES)) {} constexpr cpp_int_base(literals::detail::value_pack<>) : m_wrapper(static_cast(0u)), m_limbs(1) {} explicit constexpr cpp_int_base(scoped_shared_storage&, std::size_t) noexcept : m_wrapper(), m_limbs(1) {} // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE constexpr std::size_t size() const noexcept { return m_limbs; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR limb_pointer limbs() noexcept { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE constexpr const_limb_pointer limbs() const noexcept { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE constexpr bool sign() const noexcept { return false; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void sign(bool b) noexcept((Checked == unchecked)) { if (b) negate(); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void resize(std::size_t new_size, std::size_t min_size) noexcept((Checked == unchecked)) { m_limbs = (std::min)(new_size, internal_limb_count); detail::verify_new_size(m_limbs, min_size, checked_type()); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void normalize() noexcept((Checked == unchecked)) { limb_pointer p = limbs(); detail::verify_limb_mask(m_limbs == internal_limb_count, p[internal_limb_count - 1], upper_limb_mask, checked_type()); p[internal_limb_count - 1] &= upper_limb_mask; while ((m_limbs - 1) && !p[m_limbs - 1]) --m_limbs; } BOOST_MP_FORCEINLINE constexpr cpp_int_base() noexcept : m_wrapper(limb_type(0u)), m_limbs(1) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(const cpp_int_base& o) noexcept : m_wrapper(o.m_wrapper), m_limbs(o.m_limbs) {} // Defaulted functions: //~cpp_int_base() noexcept {} // // These are deprecated in C++20 unless we make them explicit: // BOOST_MP_CXX14_CONSTEXPR cpp_int_base& operator=(const cpp_int_base&) = default; BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void assign(const cpp_int_base& o) noexcept { if (this != &o) { m_limbs = o.m_limbs; #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION if (BOOST_MP_IS_CONST_EVALUATED(m_limbs)) { for (std::size_t i = 0; i < m_limbs; ++i) limbs()[i] = o.limbs()[i]; } else #endif std::memcpy(limbs(), o.limbs(), o.size() * sizeof(limbs()[0])); } } private: void check_negate(const std::integral_constant&) { BOOST_MP_THROW_EXCEPTION(std::range_error("Attempt to negate an unsigned number.")); } BOOST_MP_CXX14_CONSTEXPR void check_negate(const std::integral_constant&) {} public: BOOST_MP_CXX14_CONSTEXPR void negate() noexcept((Checked == unchecked)) { // Not so much a negate as a complement - this gets called when subtraction // would result in a "negative" number: if ((m_limbs == 1) && (m_wrapper.m_data[0] == 0)) return; // negating zero is always zero, and always OK. check_negate(checked_type()); std::size_t i = m_limbs; for (; i < internal_limb_count; ++i) m_wrapper.m_data[i] = 0; m_limbs = internal_limb_count; for (i = 0; i < internal_limb_count; ++i) m_wrapper.m_data[i] = ~m_wrapper.m_data[i]; normalize(); eval_increment(static_cast&>(*this)); } BOOST_MP_FORCEINLINE constexpr bool isneg() const noexcept { return false; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void do_swap(cpp_int_base& o) noexcept { for (std::size_t i = 0; i < (std::max)(size(), o.size()); ++i) std_constexpr::swap(m_wrapper.m_data[i], o.m_wrapper.m_data[i]); std_constexpr::swap(m_limbs, o.m_limbs); } protected: template BOOST_MP_CXX14_CONSTEXPR void check_in_range(const A&) noexcept {} }; template constexpr std::size_t cpp_int_base::limb_bits; template constexpr limb_type cpp_int_base::max_limb_value; template constexpr limb_type cpp_int_base::sign_bit_mask; template constexpr std::size_t cpp_int_base::internal_limb_count; // // Traits classes to figure out a native type with N bits, these vary from boost::uint_t only // because some platforms have native integer types longer than long long, "really long long" anyone?? // template struct trivial_limb_type_imp { using type = double_limb_type; }; template struct trivial_limb_type_imp { using type = typename boost::multiprecision::detail::uint_t::least; }; template struct trivial_limb_type : public trivial_limb_type_imp {}; // // Backend for fixed precision signed-magnitude type which will fit entirely inside a "double_limb_type": // template struct cpp_int_base { using local_limb_type = typename trivial_limb_type(MinBits)>::type; using limb_pointer = local_limb_type*; using const_limb_pointer = const local_limb_type*; using checked_type = std::integral_constant; struct scoped_shared_storage { BOOST_MP_CXX14_CONSTEXPR scoped_shared_storage(const cpp_int_base&, std::size_t) {} BOOST_MP_CXX14_CONSTEXPR void deallocate(std::size_t) {} }; protected: static constexpr std::size_t limb_bits = sizeof(local_limb_type) * CHAR_BIT; static constexpr local_limb_type limb_mask = (MinBits < limb_bits) ? local_limb_type((local_limb_type(~local_limb_type(0))) >> (limb_bits - MinBits)) : local_limb_type(~local_limb_type(0)); private: local_limb_type m_data; bool m_sign; // // Interface invariants: // static_assert(MinBits <= sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); protected: template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value || (std::numeric_limits::is_specialized && (std::numeric_limits::digits <= static_cast(MinBits))))>::type check_in_range(T val, const std::integral_constant&) { using common_type = typename std::common_type::type, local_limb_type>::type; if (static_cast(boost::multiprecision::detail::unsigned_abs(val)) > static_cast(limb_mask)) BOOST_MP_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value || (std::numeric_limits::is_specialized && (std::numeric_limits::digits <= static_cast(MinBits))))>::type check_in_range(T val, const std::integral_constant&) { using std::abs; using common_type = typename std::common_type::type; if (static_cast(abs(val)) > static_cast(limb_mask)) BOOST_MP_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); } template BOOST_MP_CXX14_CONSTEXPR void check_in_range(T, const std::integral_constant&) noexcept {} template BOOST_MP_CXX14_CONSTEXPR void check_in_range(T val) noexcept(noexcept(std::declval().check_in_range(std::declval(), checked_type()))) { check_in_range(val, checked_type()); } public: // // Direct construction: // template BOOST_MP_FORCEINLINE constexpr cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == unchecked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(i < 0 ? static_cast(static_cast::type>(boost::multiprecision::detail::unsigned_abs(i)) & limb_mask) : static_cast(i & limb_mask)), m_sign(i < 0) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(i < 0 ? (static_cast(static_cast::type>(boost::multiprecision::detail::unsigned_abs(i)) & limb_mask)) : static_cast(i & limb_mask)), m_sign(i < 0) { check_in_range(i); } template BOOST_MP_FORCEINLINE constexpr cpp_int_base(UI i, typename std::enable_if::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(static_cast(i) & limb_mask), m_sign(false) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(UI i, typename std::enable_if::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(static_cast(i) & limb_mask), m_sign(false) { check_in_range(i); } #if !(defined(__clang__) && defined(__MINGW32__)) template BOOST_MP_FORCEINLINE constexpr cpp_int_base(F i, typename std::enable_if::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(static_cast(i < 0 ? -i : i) & limb_mask), m_sign(i < 0) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(F i, typename std::enable_if::value && (Checked == checked)>::type const* = nullptr) : m_data(static_cast(i < 0 ? -i : i) & limb_mask), m_sign(i < 0) { check_in_range(i); } #else // // conversion from float to __int128 is broken on clang/mingw, // see: https://bugs.llvm.org/show_bug.cgi?id=48940 // Since no floating point type has more than 64 bits of // precision, we can simply cast to an intermediate type to // solve the issue: // template BOOST_MP_FORCEINLINE constexpr cpp_int_base(F i, typename std::enable_if::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(static_cast(static_cast(i < 0 ? -i : i)) & limb_mask), m_sign(i < 0) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(F i, typename std::enable_if::value && (Checked == checked)>::type const* = nullptr) : m_data(static_cast(static_cast(i < 0 ? -i : i)) & limb_mask), m_sign(i < 0) { check_in_range(i); } #endif constexpr cpp_int_base(literals::detail::value_pack<>) noexcept : m_data(static_cast(0u)), m_sign(false) {} template constexpr cpp_int_base(literals::detail::value_pack) noexcept : m_data(static_cast(a)), m_sign(false) {} template constexpr cpp_int_base(literals::detail::value_pack) noexcept : m_data(static_cast(a) | (static_cast(b) << bits_per_limb)), m_sign(false) {} constexpr cpp_int_base(const cpp_int_base& a, const literals::detail::negate_tag&) noexcept : m_data(a.m_data), m_sign(a.m_data ? !a.m_sign : false) {} // // These are deprecated in C++20 unless we make them explicit: // BOOST_MP_CXX14_CONSTEXPR cpp_int_base& operator=(const cpp_int_base&) = default; explicit constexpr cpp_int_base(scoped_shared_storage&, std::size_t) noexcept : m_data(0), m_sign(false) {} // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE constexpr std::size_t size() const noexcept { return 1; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR limb_pointer limbs() noexcept { return &m_data; } BOOST_MP_FORCEINLINE constexpr const_limb_pointer limbs() const noexcept { return &m_data; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR bool sign() const noexcept { return m_sign; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void sign(bool b) noexcept { m_sign = b; // Check for zero value: if (m_sign && !m_data) { m_sign = false; } } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void resize(std::size_t /* new_size */, std::size_t min_size) { detail::verify_new_size(2, min_size, checked_type()); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void normalize() noexcept((Checked == unchecked)) { if (!m_data) m_sign = false; // zero is always unsigned detail::verify_limb_mask(true, m_data, limb_mask, checked_type()); m_data &= limb_mask; } BOOST_MP_FORCEINLINE constexpr cpp_int_base() noexcept : m_data(0), m_sign(false) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(const cpp_int_base& o) noexcept : m_data(o.m_data), m_sign(o.m_sign) {} //~cpp_int_base() noexcept {} BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void assign(const cpp_int_base& o) noexcept { m_data = o.m_data; m_sign = o.m_sign; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void negate() noexcept { m_sign = !m_sign; // Check for zero value: if (m_data == 0) { m_sign = false; } } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR bool isneg() const noexcept { return m_sign; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void do_swap(cpp_int_base& o) noexcept { std_constexpr::swap(m_sign, o.m_sign); std_constexpr::swap(m_data, o.m_data); } }; // // Backend for unsigned fixed precision (i.e. no allocator) type which will fit entirely inside a "double_limb_type": // template struct cpp_int_base { using local_limb_type = typename trivial_limb_type(MinBits)>::type; using limb_pointer = local_limb_type* ; using const_limb_pointer = const local_limb_type* ; struct scoped_shared_storage { BOOST_MP_CXX14_CONSTEXPR scoped_shared_storage(const cpp_int_base&, std::size_t) {} BOOST_MP_CXX14_CONSTEXPR void deallocate(std::size_t) {} }; private: static constexpr std::size_t limb_bits = sizeof(local_limb_type) * CHAR_BIT; static constexpr local_limb_type limb_mask = limb_bits != MinBits ? static_cast(static_cast(~local_limb_type(0)) >> (limb_bits - MinBits)) : static_cast(~local_limb_type(0)); local_limb_type m_data; using checked_type = std::integral_constant; // // Interface invariants: // static_assert(MinBits <= sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); protected: template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if< !(std::numeric_limits::is_specialized && (std::numeric_limits::digits <= static_cast(MinBits)))>::type check_in_range(T val, const std::integral_constant&, const std::integral_constant&) { using common_type = typename std::common_type::type; if (static_cast(val) > limb_mask) BOOST_MP_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); } template BOOST_MP_CXX14_CONSTEXPR void check_in_range(T val, const std::integral_constant&, const std::integral_constant&) { using common_type = typename std::common_type::type; if (static_cast(val) > static_cast(limb_mask)) BOOST_MP_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); if (val < 0) BOOST_MP_THROW_EXCEPTION(std::range_error("The argument to an unsigned cpp_int constructor was negative.")); } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void check_in_range(T, const std::integral_constant&, const std::integral_constant&) noexcept {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void check_in_range(T val) noexcept(noexcept(std::declval().check_in_range(std::declval(), checked_type(), boost::multiprecision::detail::is_signed()))) { check_in_range(val, checked_type(), boost::multiprecision::detail::is_signed()); } public: // // Direct construction: // #ifdef __MSVC_RUNTIME_CHECKS template BOOST_MP_FORCEINLINE constexpr cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(i < 0 ? (1 + ~static_cast(-i & limb_mask)) & limb_mask : static_cast(i & limb_mask)) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(i < 0 ? 1 + ~static_cast(-i & limb_mask) : static_cast(i & limb_mask)) { check_in_range(i); } template BOOST_MP_FORCEINLINE constexpr cpp_int_base(UI i, typename std::enable_if::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(static_cast(i& limb_mask)) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(UI i, typename std::enable_if::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(static_cast(i & limb_mask)) { check_in_range(i); } #else template BOOST_MP_FORCEINLINE constexpr cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(i < 0 ? (1 + ~static_cast(-i)) & limb_mask : static_cast(i) & limb_mask) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(SI i, typename std::enable_if::value && boost::multiprecision::detail::is_integral::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(i < 0 ? 1 + ~static_cast(-i) : static_cast(i)) { check_in_range(i); } template BOOST_MP_FORCEINLINE constexpr cpp_int_base(UI i, typename std::enable_if::value && (Checked == unchecked)>::type const* = nullptr) noexcept : m_data(static_cast(i) & limb_mask) {} template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(UI i, typename std::enable_if::value && (Checked == checked)>::type const* = nullptr) noexcept(noexcept(std::declval().check_in_range(std::declval()))) : m_data(static_cast(i)) { check_in_range(i); } #endif template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_base(F i, typename std::enable_if::value >::type const* = nullptr) noexcept((Checked == unchecked)) : m_data(static_cast(i < 0 ? -i : i) & limb_mask) { check_in_range(i); if (i < 0) negate(); } constexpr cpp_int_base(literals::detail::value_pack<>) noexcept : m_data(static_cast(0u)) {} template constexpr cpp_int_base(literals::detail::value_pack) noexcept : m_data(static_cast(a)) {} template constexpr cpp_int_base(literals::detail::value_pack) noexcept : m_data(static_cast(a) | (static_cast(b) << bits_per_limb)) {} // // These are deprecated in C++20 unless we make them explicit: // BOOST_MP_CXX14_CONSTEXPR cpp_int_base& operator=(const cpp_int_base&) = default; explicit constexpr cpp_int_base(scoped_shared_storage&, std::size_t) noexcept : m_data(0) {} // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE constexpr std::size_t size() const noexcept { return 1; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR limb_pointer limbs() noexcept { return &m_data; } BOOST_MP_FORCEINLINE constexpr const_limb_pointer limbs() const noexcept { return &m_data; } BOOST_MP_FORCEINLINE constexpr bool sign() const noexcept { return false; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void sign(bool b) noexcept((Checked == unchecked)) { if (b) negate(); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void resize(unsigned, std::size_t min_size) { detail::verify_new_size(2, min_size, checked_type()); } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void normalize() noexcept((Checked == unchecked)) { detail::verify_limb_mask(true, m_data, limb_mask, checked_type()); m_data &= limb_mask; } BOOST_MP_FORCEINLINE constexpr cpp_int_base() noexcept : m_data(0) {} BOOST_MP_FORCEINLINE constexpr cpp_int_base(const cpp_int_base& o) noexcept : m_data(o.m_data) {} //~cpp_int_base() noexcept {} BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void assign(const cpp_int_base& o) noexcept { m_data = o.m_data; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void negate() #if !defined(BOOST_NO_CXX17_IF_CONSTEXPR) noexcept((Checked == unchecked)) #endif { BOOST_IF_CONSTEXPR(Checked == checked) { BOOST_MP_THROW_EXCEPTION(std::range_error("Attempt to negate an unsigned type.")); } m_data = ~m_data; ++m_data; } BOOST_MP_FORCEINLINE constexpr bool isneg() const noexcept { return false; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void do_swap(cpp_int_base& o) noexcept { std_constexpr::swap(m_data, o.m_data); } }; // // Traits class, lets us know whether type T can be directly converted to the base type, // used to enable/disable constructors etc: // template struct is_allowed_cpp_int_base_conversion : public std::conditional< std::is_same::value || std::is_same::value #if BOOST_MP_ENDIAN_LITTLE_BYTE && !defined(BOOST_MP_TEST_NO_LE) || std::is_same::value || std::is_same::value #endif || literals::detail::is_value_pack::value || (is_trivial_cpp_int::value && boost::multiprecision::detail::is_arithmetic::value), std::integral_constant, std::integral_constant>::type {}; // // Now the actual backend, normalising parameters passed to the base class: // template struct cpp_int_backend : public cpp_int_base< min_precision >::value, max_precision >::value, SignType, Checked, Allocator, is_trivial_cpp_int >::value> { using self_type = cpp_int_backend; using base_type = cpp_int_base< min_precision::value, max_precision::value, SignType, Checked, Allocator, is_trivial_cpp_int::value>; using trivial_tag = std::integral_constant::value>; public: using signed_types = typename std::conditional< is_trivial_cpp_int::value, std::tuple< signed char, short, int, long, long long, signed_double_limb_type>, std::tuple >::type; using unsigned_types = typename std::conditional< is_trivial_cpp_int::value, std::tuple, std::tuple >::type; using float_types = typename std::conditional< is_trivial_cpp_int::value, std::tuple, std::tuple >::type; using checked_type = std::integral_constant ; BOOST_MP_FORCEINLINE constexpr cpp_int_backend() noexcept {} BOOST_MP_FORCEINLINE constexpr cpp_int_backend(const cpp_int_backend& o) noexcept(std::is_void::value) : base_type(o) {} // rvalue copy: BOOST_MP_FORCEINLINE constexpr cpp_int_backend(cpp_int_backend&& o) noexcept : base_type(static_cast(o)) {} template BOOST_MP_FORCEINLINE BOOST_CXX14_CONSTEXPR cpp_int_backend(cpp_int_backend&& o, typename std::enable_if, self_type>::value>::type* = nullptr) noexcept { *this = static_cast&&>(o); } // // Direct construction from arithmetic type: // template BOOST_MP_FORCEINLINE constexpr cpp_int_backend(Arg i, typename std::enable_if::value>::type const* = nullptr) noexcept(noexcept(base_type(std::declval()))) : base_type(i) {} // // Aliasing constructor: the result will alias the memory referenced, unless // we have fixed precision and storage, in which case we copy the memory: // explicit constexpr cpp_int_backend(limb_type* data, std::size_t offset, std::size_t len) noexcept : base_type(data, offset, len) {} explicit cpp_int_backend(const limb_type* data, std::size_t offset, std::size_t len) noexcept : base_type(data, offset, len) { this->normalize(); } explicit constexpr cpp_int_backend(typename base_type::scoped_shared_storage& data, std::size_t len) noexcept : base_type(data, len) {} private: template BOOST_MP_CXX14_CONSTEXPR void do_assign(const cpp_int_backend& other, std::true_type const&, std::true_type const&) { // Assigning trivial type to trivial type: this->check_in_range(*other.limbs()); *this->limbs() = static_cast(*other.limbs()); this->sign(other.sign()); this->normalize(); } template BOOST_MP_CXX14_CONSTEXPR void do_assign(const cpp_int_backend& other, std::true_type const&, std::false_type const&) { // non-trivial to trivial narrowing conversion: double_limb_type v = *other.limbs(); if (other.size() > 1) { v |= static_cast(other.limbs()[1]) << bits_per_limb; BOOST_IF_CONSTEXPR(Checked == checked) { if (other.size() > 2) { BOOST_MP_THROW_EXCEPTION(std::range_error("Assignment of a cpp_int that is out of range for the target type.")); } } } *this = v; this->sign(other.sign()); this->normalize(); } template BOOST_MP_CXX14_CONSTEXPR void do_assign(const cpp_int_backend& other, std::false_type const&, std::true_type const&) { // trivial to non-trivial, treat the trivial argument as if it were an unsigned arithmetic type, then set the sign afterwards: *this = static_cast< typename boost::multiprecision::detail::canonical< typename cpp_int_backend::local_limb_type, cpp_int_backend >::type>(*other.limbs()); this->sign(other.sign()); } template BOOST_MP_CXX14_CONSTEXPR void do_assign(const cpp_int_backend& other, std::false_type const&, std::false_type const&) { // regular non-trivial to non-trivial assign: this->resize(other.size(), other.size()); #if !defined(BOOST_MP_HAS_IS_CONSTANT_EVALUATED) && !defined(BOOST_MP_HAS_BUILTIN_IS_CONSTANT_EVALUATED) && !defined(BOOST_NO_CXX14_CONSTEXPR) std::size_t count = (std::min)(other.size(), this->size()); for (std::size_t i = 0; i < count; ++i) this->limbs()[i] = other.limbs()[i]; #else #ifndef BOOST_MP_NO_CONSTEXPR_DETECTION if (BOOST_MP_IS_CONST_EVALUATED(other.size())) { std::size_t count = (std::min)(other.size(), this->size()); for (std::size_t i = 0; i < count; ++i) this->limbs()[i] = other.limbs()[i]; } else #endif { static_assert(sizeof(other.limbs()[0]) == sizeof(this->limbs()[0]), "This method requires equal limb sizes"); std::memcpy(this->limbs(), other.limbs(), (std::min)(other.size() * sizeof(other.limbs()[0]), this->size() * sizeof(this->limbs()[0]))); } #endif this->sign(other.sign()); this->normalize(); } public: template BOOST_MP_CXX14_CONSTEXPR cpp_int_backend( const cpp_int_backend& other, typename std::enable_if, self_type>::value>::type* = nullptr) : base_type() { do_assign( other, std::integral_constant::value>(), std::integral_constant >::value>()); } template explicit BOOST_MP_CXX14_CONSTEXPR cpp_int_backend( const cpp_int_backend& other, typename std::enable_if< !(is_implicit_cpp_int_conversion, self_type>::value)>::type* = nullptr) : base_type() { do_assign( other, std::integral_constant::value>(), std::integral_constant >::value>()); } template BOOST_MP_CXX14_CONSTEXPR cpp_int_backend& operator=( const cpp_int_backend& other) { do_assign( other, std::integral_constant::value>(), std::integral_constant >::value>()); return *this; } constexpr cpp_int_backend(const cpp_int_backend& a, const literals::detail::negate_tag& tag) : base_type(static_cast(a), tag) {} BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_backend& operator=(const cpp_int_backend& o) noexcept(noexcept(std::declval().assign(std::declval()))) { this->assign(o); return *this; } // rvalue copy: BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR cpp_int_backend& operator=(cpp_int_backend&& o) noexcept(noexcept(std::declval() = std::declval())) { *static_cast(this) = static_cast(o); return *this; } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<((MaxBits2 <= MaxBits) || (MaxBits == 0)) && !std::is_void::value, cpp_int_backend&>::type operator=(cpp_int_backend&& o) noexcept { *static_cast(this) = static_cast::base_type&&>(o); return *this; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if< boost::multiprecision::detail::is_unsigned::value && trivial_tag::value, cpp_int_backend&>::type operator=(const A& val) noexcept(noexcept(std::declval().check_in_range(std::declval()))) { this->check_in_range(val); *this->limbs() = static_cast(val); this->sign(false); this->normalize(); return *this; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if< !(boost::multiprecision::detail::is_unsigned::value || !boost::multiprecision::detail::is_integral::value) && trivial_tag::value, cpp_int_backend&>::type operator=(const A& val) noexcept(noexcept(std::declval().check_in_range(std::declval())) && noexcept(std::declval().sign(true))) { this->check_in_range(val); *this->limbs() = (val < 0) ? static_cast(boost::multiprecision::detail::unsigned_abs(val)) : static_cast(val); this->sign(val < 0); this->normalize(); return *this; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if< std::is_convertible::value && !boost::multiprecision::detail::is_integral::value && trivial_tag::value, cpp_int_backend&>::type operator=(const A& val) { this->check_in_range(val); *this->limbs() = (val < 0) ? static_cast(boost::multiprecision::detail::abs(val)) : static_cast(val); this->sign(val < 0); this->normalize(); return *this; } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if< std::is_same::value && !trivial_tag::value, cpp_int_backend&>::type operator=(A i) noexcept { this->resize(1, 1); *this->limbs() = i; this->sign(false); return *this; } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if < std::is_same::value && !trivial_tag::value, cpp_int_backend&>::type operator=(A i) noexcept(noexcept(std::declval().sign(true))) { this->resize(1, 1); *this->limbs() = static_cast(boost::multiprecision::detail::unsigned_abs(i)); this->sign(i < 0); return *this; } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if < std::is_same::value && !trivial_tag::value, cpp_int_backend&>::type operator=(A i) noexcept { static_assert(sizeof(i) == 2 * sizeof(limb_type), "Failed integer size check"); static_assert(base_type::internal_limb_count >= 2, "Failed internal limb count"); typename base_type::limb_pointer p = this->limbs(); #ifdef __MSVC_RUNTIME_CHECKS *p = static_cast(i & ~static_cast(0)); #else *p = static_cast(i); #endif p[1] = static_cast(i >> base_type::limb_bits); this->resize(p[1] ? 2 : 1, p[1] ? 2 : 1); this->sign(false); return *this; } template BOOST_MP_CXX14_CONSTEXPR typename std::enable_if < std::is_same::value && !trivial_tag::value, cpp_int_backend&>::type operator=(A i) noexcept(noexcept(std::declval().sign(true))) { static_assert(sizeof(i) == 2 * sizeof(limb_type), "double limb type size check failed"); static_assert(base_type::internal_limb_count >= 2, "Failed internal limb count check"); bool s = false; if (i < 0) s = true; double_limb_type ui = static_cast(boost::multiprecision::detail::unsigned_abs(i)); typename base_type::limb_pointer p = this->limbs(); #ifdef __MSVC_RUNTIME_CHECKS *p = static_cast(ui & ~static_cast(0)); #else *p = static_cast(ui); #endif p[1] = static_cast(ui >> base_type::limb_bits); this->resize(p[1] ? 2 : 1, p[1] ? 2 : 1); this->sign(s); return *this; } private: template BOOST_MP_CXX14_CONSTEXPR void do_assign_float(F a) { using default_ops::eval_add; using default_ops::eval_subtract; BOOST_MP_FLOAT128_USING using std::floor; using std::frexp; using std::ldexp; if (a < 0) { do_assign_float(-a); this->sign(true); return; } if (a == 0) { *this = static_cast(0u); } if (a == 1) { *this = static_cast(1u); } if (!BOOST_MP_ISFINITE(a)) { BOOST_MP_THROW_EXCEPTION(std::runtime_error("Cannot convert a non-finite number to an integer.")); } int e = 0; F f(0), term(0); *this = static_cast(0u); f = frexp(a, &e); #if !(defined(__clang__) && (__clang_major__ <= 7)) constexpr limb_type shift = std::numeric_limits::digits; #else // clang 7 has an issue converting long double to unsigned long long in // release mode (bits get dropped, conversion appears to go via float) // Never extract more than double bits at a time: constexpr limb_type shift = std::numeric_limits::digits > std::numeric_limits::digits ? std::numeric_limits::digits : std::numeric_limits::digits; #endif while (f != static_cast(0.0f)) { // extract int sized bits from f: f = ldexp(f, shift); term = floor(f); e = e - static_cast(shift); eval_left_shift(*this, shift); #if !(defined(__clang__) && (__clang_major__ <= 7)) if (term > 0) eval_add(*this, static_cast(term)); else eval_subtract(*this, static_cast(-term)); #else // clang 7 requires extra cast to double to avoid buggy code generation: if (term > 0) eval_add(*this, static_cast(static_cast(term))); else eval_subtract(*this, static_cast(static_cast(-term))); #endif f -= term; } if (e > 0) eval_left_shift(*this, static_cast(e)); else if (e < 0) eval_right_shift(*this, static_cast(-e)); } public: template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if < std::is_floating_point::value && !trivial_tag::value, cpp_int_backend&>::type operator=(A a) { do_assign_float(a); return *this; } private: void do_assign_string(const char* s, const std::integral_constant&) { std::size_t n = s ? std::strlen(s) : 0; *this = 0; unsigned radix = 10; bool isneg = false; if (n && (*s == '-')) { --n; ++s; isneg = true; } if (n && (*s == '0')) { if ((n > 1) && ((s[1] == 'x') || (s[1] == 'X'))) { radix = 16; s += 2; n -= 2; } else { radix = 8; n -= 1; } } if (n) { unsigned val; while (*s) { if (*s >= '0' && *s <= '9') val = static_cast(*s - '0'); else if (*s >= 'a' && *s <= 'f') val = 10u + static_cast(*s - 'a'); else if (*s >= 'A' && *s <= 'F') val = 10u + static_cast(*s - 'A'); else val = radix + 1u; if (val >= radix) { BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string.")); } *this->limbs() = detail::checked_multiply(*this->limbs(), static_cast(radix), checked_type()); *this->limbs() = detail::checked_add(*this->limbs(), static_cast(val), checked_type()); ++s; } } if (isneg) this->negate(); } void do_assign_string(const char* s, const std::integral_constant&) { using default_ops::eval_add; using default_ops::eval_multiply; std::size_t n = s ? std::strlen(s) : 0; *this = static_cast(0u); unsigned radix = 10; bool isneg = false; if (n && (*s == '-')) { --n; ++s; isneg = true; } if (n && (*s == '0')) { if ((n > 1) && ((s[1] == 'x') || (s[1] == 'X'))) { radix = 16; s += 2; n -= 2; } else { radix = 8; n -= 1; } } // // Exception guarantee: create the result in stack variable "result" // then do a swap at the end. In the event of a throw, *this will // be left unchanged. // cpp_int_backend result; if (n) { if (radix == 16) { while (*s == '0') ++s; std::size_t bitcount = 4 * std::strlen(s); limb_type val; std::size_t limb, shift; if (bitcount > 4) bitcount -= 4; else bitcount = 0; std::size_t newsize = bitcount / (sizeof(limb_type) * CHAR_BIT) + 1; result.resize(static_cast(newsize), static_cast(newsize)); // will throw if this is a checked integer that cannot be resized std::memset(result.limbs(), 0, result.size() * sizeof(limb_type)); while (*s) { if (*s >= '0' && *s <= '9') val = static_cast(*s - '0'); else if (*s >= 'a' && *s <= 'f') val = 10u + static_cast(*s - 'a'); else if (*s >= 'A' && *s <= 'F') val = 10u + static_cast(*s - 'A'); else { #if defined(BOOST_NO_EXCEPTIONS) val = static_cast('0'); #endif BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string.")); } limb = bitcount / (sizeof(limb_type) * CHAR_BIT); shift = bitcount % (sizeof(limb_type) * CHAR_BIT); val <<= shift; if (result.size() > limb) { result.limbs()[limb] |= val; } ++s; bitcount -= 4; } result.normalize(); } else if (radix == 8) { while (*s == '0') ++s; std::size_t bitcount = 3 * std::strlen(s); limb_type val; std::size_t limb, shift; if (bitcount > 3) bitcount -= 3; else bitcount = 0; std::size_t newsize = bitcount / (sizeof(limb_type) * CHAR_BIT) + 1; result.resize(static_cast(newsize), static_cast(newsize)); // will throw if this is a checked integer that cannot be resized std::memset(result.limbs(), 0, result.size() * sizeof(limb_type)); while (*s) { if (*s >= '0' && *s <= '7') val = static_cast(*s - '0'); else { #if defined(BOOST_NO_EXCEPTIONS) val = static_cast('0'); #endif BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string.")); } limb = bitcount / (sizeof(limb_type) * CHAR_BIT); shift = bitcount % (sizeof(limb_type) * CHAR_BIT); if (result.size() > limb) { result.limbs()[limb] |= (val << shift); if (shift > sizeof(limb_type) * CHAR_BIT - 3) { // Deal with the bits in val that overflow into the next limb: val >>= (sizeof(limb_type) * CHAR_BIT - shift); if (val) { // If this is the most-significant-limb, we may need to allocate an extra one for the overflow: if (limb + 1 == newsize) { result.resize(static_cast(newsize + 1), static_cast(newsize + 1)); result.limbs()[limb + 1] = 0; } if (result.size() > limb + 1) { result.limbs()[limb + 1] |= val; } } } } ++s; bitcount -= 3; } result.normalize(); } else { // Base 10, we extract blocks of size 10^9 at a time, that way // the number of multiplications is kept to a minimum: limb_type block_mult = max_block_10; while (*s) { limb_type block = 0; for (unsigned i = 0; i < digits_per_block_10; ++i) { limb_type val; if (*s >= '0' && *s <= '9') val = static_cast(*s - '0'); else { #if defined(BOOST_NO_EXCEPTIONS) val = static_cast('0'); #endif BOOST_MP_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input.")); } block *= 10; block += val; if (!*++s) { block_mult = block_multiplier(i); break; } } eval_multiply(result, block_mult); eval_add(result, block); } } } if (isneg) result.negate(); result.swap(*this); } public: cpp_int_backend& operator=(const char* s) { do_assign_string(s, trivial_tag()); return *this; } BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR void swap(cpp_int_backend& o) noexcept { this->do_swap(o); } private: std::string do_get_trivial_string(std::ios_base::fmtflags f, const std::integral_constant&) const { using io_type = typename std::conditional::type; if (this->sign() && (((f & std::ios_base::hex) == std::ios_base::hex) || ((f & std::ios_base::oct) == std::ios_base::oct))) BOOST_MP_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); std::stringstream ss; ss.flags(f & ~std::ios_base::showpos); ss << static_cast(*this->limbs()); std::string result; if (this->sign()) result += '-'; else if (f & std::ios_base::showpos) result += '+'; result += ss.str(); return result; } std::string do_get_trivial_string(std::ios_base::fmtflags f, const std::integral_constant&) const { // Even though we have only one limb, we can't do IO on it :-( int base = 10; if ((f & std::ios_base::oct) == std::ios_base::oct) base = 8; else if ((f & std::ios_base::hex) == std::ios_base::hex) base = 16; std::string result; std::size_t Bits = sizeof(typename base_type::local_limb_type) * CHAR_BIT; if (base == 8 || base == 16) { if (this->sign()) BOOST_MP_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); limb_type shift = base == 8 ? 3 : 4; limb_type mask = static_cast((1u << shift) - 1); typename base_type::local_limb_type v = *this->limbs(); result.assign(Bits / shift + (Bits % shift ? 1 : 0), '0'); std::string::difference_type pos = static_cast(result.size() - 1u); char letter_a = f & std::ios_base::uppercase ? 'A' : 'a'; for (std::size_t i = 0; i < Bits / shift; ++i) { char c = static_cast('0' + static_cast(v & mask)); if (c > '9') c = static_cast(c + letter_a - '9' - 1); result[static_cast(pos)] = c; --pos; v >>= shift; } if (Bits % shift) { mask = static_cast((1u << (Bits % shift)) - 1); char c = static_cast('0' + static_cast(v & mask)); if (c > '9') c = static_cast(c + letter_a - '9'); result[static_cast(pos)] = c; } // // Get rid of leading zeros: // std::string::size_type n = result.find_first_not_of('0'); if (!result.empty() && (n == std::string::npos)) n = result.size() - 1; result.erase(0, n); if (f & std::ios_base::showbase) { const char* pp = base == 8 ? "0" : (f & std::ios_base::uppercase) ? "0X" : "0x"; result.insert(static_cast(0), pp); } } else { result.assign(Bits / 3 + 1, '0'); std::string::difference_type pos = static_cast(result.size() - 1u); typename base_type::local_limb_type v(*this->limbs()); bool neg = false; if (this->sign()) { neg = true; } while (v) { result[static_cast(pos)] = static_cast(static_cast(v % 10) + '0'); --pos; v /= 10; } std::string::size_type n = result.find_first_not_of('0'); result.erase(0, n); if (result.empty()) result = "0"; if (neg) result.insert(static_cast(0), 1, '-'); else if (f & std::ios_base::showpos) result.insert(static_cast(0), 1, '+'); } return result; } std::string do_get_string(std::ios_base::fmtflags f, const std::integral_constant&) const { #ifdef BOOST_MP_NO_DOUBLE_LIMB_TYPE_IO return do_get_trivial_string(f, std::integral_constant::value>()); #else return do_get_trivial_string(f, std::integral_constant()); #endif } std::string do_get_string(std::ios_base::fmtflags f, const std::integral_constant&) const { using default_ops::eval_get_sign; int base = 10; if ((f & std::ios_base::oct) == std::ios_base::oct) base = 8; else if ((f & std::ios_base::hex) == std::ios_base::hex) base = 16; std::string result; std::size_t Bits = this->size() * base_type::limb_bits; if (base == 8 || base == 16) { if (this->sign()) BOOST_MP_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); limb_type shift = base == 8 ? 3 : 4; limb_type mask = static_cast((1u << shift) - 1); cpp_int_backend t(*this); result.assign(Bits / shift + ((Bits % shift) ? 1 : 0), '0'); std::string::difference_type pos = static_cast(result.size() - 1u); char letter_a = f & std::ios_base::uppercase ? 'A' : 'a'; for (std::size_t i = 0; i < Bits / shift; ++i) { char c = static_cast('0' + static_cast(t.limbs()[0] & mask)); if (c > '9') c = static_cast(c + letter_a - '9' - 1); result[static_cast(pos)] = c; --pos; eval_right_shift(t, shift); } if (Bits % shift) { mask = static_cast((1u << (Bits % shift)) - 1); char c = static_cast('0' + static_cast(t.limbs()[0] & mask)); if (c > '9') c = static_cast(c + letter_a - '9'); result[static_cast(pos)] = c; } // // Get rid of leading zeros: // std::string::size_type n = result.find_first_not_of('0'); if (!result.empty() && (n == std::string::npos)) n = result.size() - 1; result.erase(0, n); if (f & std::ios_base::showbase) { const char* pp = base == 8 ? "0" : (f & std::ios_base::uppercase) ? "0X" : "0x"; result.insert(static_cast(0), pp); } } else { result.assign(Bits / 3 + 1, '0'); std::string::difference_type pos = static_cast(result.size() - 1u); cpp_int_backend t(*this); cpp_int_backend r; bool neg = false; if (t.sign()) { t.negate(); neg = true; } if (this->size() == 1) { result = std::to_string(t.limbs()[0]); } else { cpp_int_backend block10; block10 = max_block_10; while (eval_get_sign(t) != 0) { cpp_int_backend t2; divide_unsigned_helper(&t2, t, block10, r); t = t2; limb_type v = r.limbs()[0]; for (std::size_t i = 0; i < digits_per_block_10; ++i) { char c = static_cast('0' + static_cast(v % 10)); v /= 10; result[static_cast(pos)] = c; if (pos-- == 0u) break; } } } std::string::size_type n = result.find_first_not_of('0'); result.erase(0, n); if (result.empty()) result = std::string(static_cast(1u), '0'); if (neg) result.insert(static_cast(0), 1, '-'); else if (f & std::ios_base::showpos) result.insert(static_cast(0), 1, '+'); } return result; } public: std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f) const { return do_get_string(f, trivial_tag()); } private: template void construct_from_container(const Container& c, const std::integral_constant&) { // // We assume that c is a sequence of (unsigned) bytes with the most significant byte first: // std::size_t newsize = static_cast(c.size() / sizeof(limb_type)); if (c.size() % sizeof(limb_type)) { ++newsize; } if (newsize) { this->resize(newsize, newsize); // May throw std::memset(this->limbs(), 0, this->size()); typename Container::const_iterator i(c.begin()), j(c.end()); std::size_t byte_location = static_cast(c.size() - 1); while (i != j) { std::size_t limb = byte_location / sizeof(limb_type); std::size_t shift = (byte_location % sizeof(limb_type)) * CHAR_BIT; if (this->size() > limb) this->limbs()[limb] |= static_cast(static_cast(*i)) << shift; ++i; --byte_location; } } } template BOOST_MP_CXX14_CONSTEXPR void construct_from_container(const Container& c, const std::integral_constant&) { // // We assume that c is a sequence of (unsigned) bytes with the most significant byte first: // using local_limb_type = typename base_type::local_limb_type; *this->limbs() = 0; if (c.size()) { typename Container::const_iterator i(c.begin()), j(c.end()); std::size_t byte_location = static_cast(c.size() - 1); while (i != j) { std::size_t limb = byte_location / sizeof(local_limb_type); std::size_t shift = (byte_location % sizeof(local_limb_type)) * CHAR_BIT; if (limb == 0) this->limbs()[0] |= static_cast(static_cast(*i)) << shift; ++i; --byte_location; } } } public: template BOOST_MP_CXX14_CONSTEXPR cpp_int_backend(const Container& c, typename std::enable_if::value>::type const* = nullptr) { // // We assume that c is a sequence of (unsigned) bytes with the most significant byte first: // construct_from_container(c, trivial_tag()); } template BOOST_MP_CXX14_CONSTEXPR int compare_imp(const cpp_int_backend& o, const std::integral_constant&, const std::integral_constant&) const noexcept { if (this->sign() != o.sign()) return this->sign() ? -1 : 1; // Only do the compare if the same sign: int result = compare_unsigned(o); if (this->sign()) result = -result; return result; } template BOOST_MP_CXX14_CONSTEXPR int compare_imp(const cpp_int_backend& o, const std::integral_constant&, const std::integral_constant&) const { cpp_int_backend t(*this); return t.compare(o); } template BOOST_MP_CXX14_CONSTEXPR int compare_imp(const cpp_int_backend& o, const std::integral_constant&, const std::integral_constant&) const { cpp_int_backend t(o); return compare(t); } template BOOST_MP_CXX14_CONSTEXPR int compare_imp(const cpp_int_backend& o, const std::integral_constant&, const std::integral_constant&) const noexcept { if (this->sign()) { if (o.sign()) { return *this->limbs() < *o.limbs() ? 1 : (*this->limbs() > *o.limbs() ? -1 : 0); } else return -1; } else { if (o.sign()) return 1; return *this->limbs() < *o.limbs() ? -1 : (*this->limbs() > *o.limbs() ? 1 : 0); } } template BOOST_MP_CXX14_CONSTEXPR int compare(const cpp_int_backend& o) const noexcept { using t1 = std::integral_constant >::value> ; using t2 = std::integral_constant >::value>; return compare_imp(o, t1(), t2()); } template BOOST_MP_CXX14_CONSTEXPR int compare_unsigned(const cpp_int_backend& o) const noexcept { if (this->size() != o.size()) { return this->size() > o.size() ? 1 : -1; } typename base_type::const_limb_pointer pa = this->limbs(); typename base_type::const_limb_pointer pb = o.limbs(); for (std::ptrdiff_t i = static_cast(static_cast(this->size()) - 1); i >= 0; --i) { if (pa[i] != pb[i]) return pa[i] > pb[i] ? 1 : -1; } return 0; } template BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if::value, int>::type compare(Arithmetic i) const { // braindead version: cpp_int_backend t; t = i; return compare(t); } }; } // namespace backends namespace default_ops { template struct double_precision_type; template struct double_precision_type > { using type = typename std::conditional< backends::is_fixed_precision >::value, backends::cpp_int_backend< (std::is_void::value ? 2 * backends::max_precision >::value : MinBits), 2 * backends::max_precision >::value, SignType, Checked, Allocator>, backends::cpp_int_backend >::type; }; } // namespace default_ops template struct is_equivalent_number_type, backends::cpp_int_backend > : public std::integral_constant, et_on> >::digits == std::numeric_limits, et_on> >::digits>{}; template struct number_category > : public std::integral_constant {}; #ifdef BOOST_HAS_INT128 namespace detail { template struct is_convertible_arithmetic > { static constexpr bool value = true; }; template struct is_convertible_arithmetic > { static constexpr bool value = true; }; } #endif #if defined(__GNUC__) && !defined(__clang__) // see https://github.com/boostorg/multiprecision/issues/413 // and https://github.com/boostorg/multiprecision/issues/431 #pragma GCC diagnostic pop #endif #ifdef BOOST_MSVC #pragma warning(pop) #endif }} // namespace boost::multiprecision // // Last of all we include the implementations of all the eval_* non member functions: // #include #include #include #include #include #include #include #include #include #include #endif