// (C) Copyright Nick Thompson 2021. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_TOOLS_QUARTIC_ROOTS_HPP #define BOOST_MATH_TOOLS_QUARTIC_ROOTS_HPP #include #include #include namespace boost::math::tools { namespace detail { // Make sure the nans are always at the back of the array: template bool comparator(Real r1, Real r2) { using std::isnan; if (isnan(r1)) { return false; } if (isnan(r2)) { return true; } return r1 < r2; } template std::array polish_and_sort(Real a, Real b, Real c, Real d, Real e, std::array& roots) { // Polish the roots with a Halley iterate. using std::fma; using std::abs; for (auto &r : roots) { Real df = fma(4*a, r, 3*b); df = fma(df, r, 2*c); df = fma(df, r, d); Real d2f = fma(12*a, r, 6*b); d2f = fma(d2f, r, 2*c); Real f = fma(a, r, b); f = fma(f,r,c); f = fma(f,r,d); f = fma(f,r,e); Real denom = 2*df*df - f*d2f; if (abs(denom) > (std::numeric_limits::min)()) { r -= 2*f*df/denom; } } std::sort(roots.begin(), roots.end(), detail::comparator); return roots; } } // Solves ax^4 + bx^3 + cx^2 + dx + e = 0. // Only returns the real roots, as these are the only roots of interest in ray intersection problems. // Follows Graphics Gems V: https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c template std::array quartic_roots(Real a, Real b, Real c, Real d, Real e) { using std::abs; using std::sqrt; auto nan = std::numeric_limits::quiet_NaN(); std::array roots{nan, nan, nan, nan}; if (abs(a) <= (std::numeric_limits::min)()) { auto cbrts = cubic_roots(b, c, d, e); roots[0] = cbrts[0]; roots[1] = cbrts[1]; roots[2] = cbrts[2]; if (b == 0 && c == 0 && d == 0 && e == 0) { roots[3] = 0; } return detail::polish_and_sort(a, b, c, d, e, roots); } if (abs(e) <= (std::numeric_limits::min)()) { auto v = cubic_roots(a, b, c, d); roots[0] = v[0]; roots[1] = v[1]; roots[2] = v[2]; roots[3] = 0; return detail::polish_and_sort(a, b, c, d, e, roots); } // Now solve x^4 + Ax^3 + Bx^2 + Cx + D = 0. Real A = b/a; Real B = c/a; Real C = d/a; Real D = e/a; Real Asq = A*A; // Let x = y - A/4: // Mathematica: Expand[(y - A/4)^4 + A*(y - A/4)^3 + B*(y - A/4)^2 + C*(y - A/4) + D] // We now solve the depressed quartic y^4 + py^2 + qy + r = 0. Real p = B - 3*Asq/8; Real q = C - A*B/2 + Asq*A/8; Real r = D - A*C/4 + Asq*B/16 - 3*Asq*Asq/256; if (abs(r) <= (std::numeric_limits::min)()) { auto [r1, r2, r3] = cubic_roots(Real(1), Real(0), p, q); r1 -= A/4; r2 -= A/4; r3 -= A/4; roots[0] = r1; roots[1] = r2; roots[2] = r3; roots[3] = -A/4; return detail::polish_and_sort(a, b, c, d, e, roots); } // Biquadratic case: if (abs(q) <= (std::numeric_limits::min)()) { auto [r1, r2] = quadratic_roots(Real(1), p, r); if (r1 >= 0) { Real rtr = sqrt(r1); roots[0] = rtr - A/4; roots[1] = -rtr - A/4; } if (r2 >= 0) { Real rtr = sqrt(r2); roots[2] = rtr - A/4; roots[3] = -rtr - A/4; } return detail::polish_and_sort(a, b, c, d, e, roots); } // Now split the depressed quartic into two quadratics: // y^4 + py^2 + qy + r = (y^2 + sy + u)(y^2 - sy + v) = y^4 + (v+u-s^2)y^2 + s(v - u)y + uv // So p = v+u-s^2, q = s(v - u), r = uv. // Then (v+u)^2 - (v-u)^2 = 4uv = 4r = (p+s^2)^2 - q^2/s^2. // Multiply through by s^2 to get s^2(p+s^2)^2 - q^2 - 4rs^2 = 0, which is a cubic in s^2. // Then we let z = s^2, to get // z^3 + 2pz^2 + (p^2 - 4r)z - q^2 = 0. auto z_roots = cubic_roots(Real(1), 2*p, p*p - 4*r, -q*q); // z = s^2, so s = sqrt(z). // Hence we require a root > 0, and for the sake of sanity we should take the largest one: Real largest_root = std::numeric_limits::lowest(); for (auto z : z_roots) { if (z > largest_root) { largest_root = z; } } // No real roots: if (largest_root <= 0) { return roots; } Real s = sqrt(largest_root); // s is nonzero, because we took care of the biquadratic case. Real v = (p + largest_root + q/s)/2; Real u = v - q/s; // Now solve y^2 + sy + u = 0: auto [root0, root1] = quadratic_roots(Real(1), s, u); // Now solve y^2 - sy + v = 0: auto [root2, root3] = quadratic_roots(Real(1), -s, v); roots[0] = root0; roots[1] = root1; roots[2] = root2; roots[3] = root3; for (auto& r : roots) { r -= A/4; } return detail::polish_and_sort(a, b, c, d, e, roots); } } #endif