// boost sinhc.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_SINHC_HPP #define BOOST_SINHC_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include #include #include // These are the the "Hyperbolic Sinus Cardinal" functions. namespace boost { namespace math { namespace detail { // This is the "Hyperbolic Sinus Cardinal" of index Pi. template inline T sinhc_pi_imp(const T x) { using ::std::abs; using ::std::sinh; using ::std::sqrt; static T const taylor_0_bound = tools::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sinh(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 T result = static_cast(1); if (abs(x) >= taylor_0_bound) { T x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result += x2/static_cast(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast(120); } } return(result); } } } // namespace detail template inline typename tools::promote_args::type sinhc_pi(T x) { typedef typename tools::promote_args::type result_type; return detail::sinhc_pi_imp(static_cast(x)); } template inline typename tools::promote_args::type sinhc_pi(T x, const Policy&) { return boost::math::sinhc_pi(x); } template class U> inline U sinhc_pi(const U x) { using std::abs; using std::sinh; using std::sqrt; using ::std::numeric_limits; static T const taylor_0_bound = tools::epsilon(); static T const taylor_2_bound = sqrt(taylor_0_bound); static T const taylor_n_bound = sqrt(taylor_2_bound); if (abs(x) >= taylor_n_bound) { return(sinh(x)/x); } else { // approximation by taylor series in x at 0 up to order 0 #ifdef __MWERKS__ U result = static_cast >(1); #else U result = U(1); #endif if (abs(x) >= taylor_0_bound) { U x2 = x*x; // approximation by taylor series in x at 0 up to order 2 result += x2/static_cast(6); if (abs(x) >= taylor_2_bound) { // approximation by taylor series in x at 0 up to order 4 result += (x2*x2)/static_cast(120); } } return(result); } } } } #endif /* BOOST_SINHC_HPP */