// Copyright (c) 2013 Anton Bikineev // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // This is a partial header, do not include on it's own!!! // // Linear combination for bessel derivatives are defined here #ifndef BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP #define BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP #include #ifdef _MSC_VER #pragma once #endif namespace boost{ namespace math{ namespace detail{ template inline T bessel_j_derivative_linear(T v, T x, Tag tag, Policy pol) { return (boost::math::detail::cyl_bessel_j_imp(v-1, x, tag, pol) - boost::math::detail::cyl_bessel_j_imp(v+1, x, tag, pol)) / 2; } template inline T bessel_j_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol) { return (boost::math::detail::cyl_bessel_j_imp(itrunc(v-1), x, tag, pol) - boost::math::detail::cyl_bessel_j_imp(itrunc(v+1), x, tag, pol)) / 2; } template inline T sph_bessel_j_derivative_linear(unsigned v, T x, Policy pol) { return (v / x) * boost::math::detail::sph_bessel_j_imp(v, x, pol) - boost::math::detail::sph_bessel_j_imp(v+1, x, pol); } template inline T bessel_i_derivative_linear(T v, T x, Policy pol) { T result = boost::math::detail::cyl_bessel_i_imp(v - 1, x, pol); if(result >= tools::max_value()) return result; // result is infinite // Both experimentally, and based on https://www.wolframalpha.com/input?i=BesselI%5Bv%2C+x%5D%2FBesselI%5Bv%2B2%2C+x%5D // I[v + 1, x] < I[v-1, x], so this can't overflow: T result2 = boost::math::detail::cyl_bessel_i_imp(v + 1, x, pol); return result / 2 + result2 / 2; } template inline T bessel_k_derivative_linear(T v, T x, Tag tag, Policy pol) { T result = boost::math::detail::cyl_bessel_k_imp(v - 1, x, tag, pol); if(result >= tools::max_value()) return -result; // result is infinite T result2 = boost::math::detail::cyl_bessel_k_imp(v + 1, x, tag, pol); if(result2 >= tools::max_value() + result) return -boost::math::policies::raise_overflow_error("cyl_bessel_k_prime<%1>", 0, pol); // result is infinite result /= -2; result2 /= -2; return result + result2; } template inline T bessel_k_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol) { T result = boost::math::detail::cyl_bessel_k_imp(itrunc(v - 1), x, tag, pol); if (result >= tools::max_value()) return -result; // result is infinite T result2 = boost::math::detail::cyl_bessel_k_imp(itrunc(v + 1), x, tag, pol); if (result2 >= tools::max_value() + result) return -boost::math::policies::raise_overflow_error("cyl_bessel_k_prime<%1>", 0, pol); // result is infinite result /= -2; result2 /= -2; return result + result2; } template inline T bessel_k_derivative_linear(T v, T x, const bessel_maybe_int_tag&, Policy pol) { using std::floor; if (floor(v) == v) return bessel_k_derivative_linear(v, x, bessel_int_tag(), pol); return bessel_k_derivative_linear(v, x, bessel_no_int_tag(), pol); } template inline T bessel_y_derivative_linear(T v, T x, Tag tag, Policy pol) { return (boost::math::detail::cyl_neumann_imp(v-1, x, tag, pol) - boost::math::detail::cyl_neumann_imp(v+1, x, tag, pol)) / 2; } template inline T bessel_y_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol) { return (boost::math::detail::cyl_neumann_imp(itrunc(v-1), x, tag, pol) - boost::math::detail::cyl_neumann_imp(itrunc(v+1), x, tag, pol)) / 2; } template inline T sph_neumann_derivative_linear(unsigned v, T x, Policy pol) { return (v / x) * boost::math::detail::sph_neumann_imp(v, x, pol) - boost::math::detail::sph_neumann_imp(v+1, x, pol); } }}} // namespaces #endif // BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP