// boost quaternion.hpp header file // (C) Copyright Hubert Holin 2001. // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org for updates, documentation, and revision history. #ifndef BOOST_QUATERNION_HPP #define BOOST_QUATERNION_HPP #include #include #include // for the "<<" operator #include #include // for the "<<" and ">>" operators #include // for the "<<" operator #include // for the Sinus cardinal #include // for the Hyperbolic Sinus cardinal #include #include namespace boost { namespace math { namespace detail { template struct is_trivial_arithmetic_type_imp { typedef std::integral_constant() += std::declval()) && noexcept(std::declval() -= std::declval()) && noexcept(std::declval() *= std::declval()) && noexcept(std::declval() /= std::declval()) > type; }; template struct is_trivial_arithmetic_type : public is_trivial_arithmetic_type_imp::type {}; } #ifndef BOOST_MATH_NO_CXX14_CONSTEXPR namespace constexpr_detail { template constexpr void swap(T& a, T& b) { T t(a); a = b; b = t; } } #endif template class quaternion { public: typedef T value_type; // constructor for H seen as R^4 // (also default constructor) constexpr explicit quaternion( T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T()) : a(requested_a), b(requested_b), c(requested_c), d(requested_d) { // nothing to do! } // constructor for H seen as C^2 constexpr explicit quaternion( ::std::complex const & z0, ::std::complex const & z1 = ::std::complex()) : a(z0.real()), b(z0.imag()), c(z1.real()), d(z1.imag()) { // nothing to do! } // UNtemplated copy constructor constexpr quaternion(quaternion const & a_recopier) : a(a_recopier.R_component_1()), b(a_recopier.R_component_2()), c(a_recopier.R_component_3()), d(a_recopier.R_component_4()) {} constexpr quaternion(quaternion && a_recopier) : a(std::move(a_recopier.R_component_1())), b(std::move(a_recopier.R_component_2())), c(std::move(a_recopier.R_component_3())), d(std::move(a_recopier.R_component_4())) {} // templated copy constructor template constexpr explicit quaternion(quaternion const & a_recopier) : a(static_cast(a_recopier.R_component_1())), b(static_cast(a_recopier.R_component_2())), c(static_cast(a_recopier.R_component_3())), d(static_cast(a_recopier.R_component_4())) { // nothing to do! } // destructor // (this is taken care of by the compiler itself) // accessors // // Note: Like complex number, quaternions do have a meaningful notion of "real part", // but unlike them there is no meaningful notion of "imaginary part". // Instead there is an "unreal part" which itself is a quaternion, and usually // nothing simpler (as opposed to the complex number case). // However, for practicality, there are accessors for the other components // (these are necessary for the templated copy constructor, for instance). constexpr T real() const { return(a); } constexpr quaternion unreal() const { return(quaternion(static_cast(0), b, c, d)); } constexpr T R_component_1() const { return(a); } constexpr T R_component_2() const { return(b); } constexpr T R_component_3() const { return(c); } constexpr T R_component_4() const { return(d); } constexpr ::std::complex C_component_1() const { return(::std::complex(a, b)); } constexpr ::std::complex C_component_2() const { return(::std::complex(c, d)); } BOOST_MATH_CXX14_CONSTEXPR void swap(quaternion& o) { #ifndef BOOST_MATH_NO_CXX14_CONSTEXPR using constexpr_detail::swap; #else using std::swap; #endif swap(a, o.a); swap(b, o.b); swap(c, o.c); swap(d, o.d); } // assignment operators template BOOST_MATH_CXX14_CONSTEXPR quaternion & operator = (quaternion const & a_affecter) { a = static_cast(a_affecter.R_component_1()); b = static_cast(a_affecter.R_component_2()); c = static_cast(a_affecter.R_component_3()); d = static_cast(a_affecter.R_component_4()); return(*this); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator = (quaternion const & a_affecter) { a = a_affecter.a; b = a_affecter.b; c = a_affecter.c; d = a_affecter.d; return(*this); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator = (quaternion && a_affecter) { a = std::move(a_affecter.a); b = std::move(a_affecter.b); c = std::move(a_affecter.c); d = std::move(a_affecter.d); return(*this); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator = (T const & a_affecter) { a = a_affecter; b = c = d = static_cast(0); return(*this); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator = (::std::complex const & a_affecter) { a = a_affecter.real(); b = a_affecter.imag(); c = d = static_cast(0); return(*this); } // other assignment-related operators // // NOTE: Quaternion multiplication is *NOT* commutative; // symbolically, "q *= rhs;" means "q = q * rhs;" // and "q /= rhs;" means "q = q * inverse_of(rhs);" // // Note2: Each operator comes in 2 forms - one for the simple case where // type T throws no exceptions, and one exception-safe version // for the case where it might. private: BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(T const & rhs, const std::true_type&) { a += rhs; return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(T const & rhs, const std::false_type&) { quaternion result(a + rhs, b, c, d); // exception guard swap(result); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(std::complex const & rhs, const std::true_type&) { a += std::real(rhs); b += std::imag(rhs); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(std::complex const & rhs, const std::false_type&) { quaternion result(a + std::real(rhs), b + std::imag(rhs), c, d); // exception guard swap(result); return *this; } template BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(quaternion const & rhs, const std::true_type&) { a += rhs.R_component_1(); b += rhs.R_component_2(); c += rhs.R_component_3(); d += rhs.R_component_4(); return *this; } template BOOST_MATH_CXX14_CONSTEXPR quaternion & do_add(quaternion const & rhs, const std::false_type&) { quaternion result(a + rhs.R_component_1(), b + rhs.R_component_2(), c + rhs.R_component_3(), d + rhs.R_component_4()); // exception guard swap(result); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(T const & rhs, const std::true_type&) { a -= rhs; return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(T const & rhs, const std::false_type&) { quaternion result(a - rhs, b, c, d); // exception guard swap(result); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(std::complex const & rhs, const std::true_type&) { a -= std::real(rhs); b -= std::imag(rhs); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(std::complex const & rhs, const std::false_type&) { quaternion result(a - std::real(rhs), b - std::imag(rhs), c, d); // exception guard swap(result); return *this; } template BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(quaternion const & rhs, const std::true_type&) { a -= rhs.R_component_1(); b -= rhs.R_component_2(); c -= rhs.R_component_3(); d -= rhs.R_component_4(); return *this; } template BOOST_MATH_CXX14_CONSTEXPR quaternion & do_subtract(quaternion const & rhs, const std::false_type&) { quaternion result(a - rhs.R_component_1(), b - rhs.R_component_2(), c - rhs.R_component_3(), d - rhs.R_component_4()); // exception guard swap(result); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_multiply(T const & rhs, const std::true_type&) { a *= rhs; b *= rhs; c *= rhs; d *= rhs; return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_multiply(T const & rhs, const std::false_type&) { quaternion result(a * rhs, b * rhs, c * rhs, d * rhs); // exception guard swap(result); return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_divide(T const & rhs, const std::true_type&) { a /= rhs; b /= rhs; c /= rhs; d /= rhs; return *this; } BOOST_MATH_CXX14_CONSTEXPR quaternion & do_divide(T const & rhs, const std::false_type&) { quaternion result(a / rhs, b / rhs, c / rhs, d / rhs); // exception guard swap(result); return *this; } public: BOOST_MATH_CXX14_CONSTEXPR quaternion & operator += (T const & rhs) { return do_add(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator += (::std::complex const & rhs) { return do_add(rhs, detail::is_trivial_arithmetic_type()); } template BOOST_MATH_CXX14_CONSTEXPR quaternion & operator += (quaternion const & rhs) { return do_add(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator -= (T const & rhs) { return do_subtract(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator -= (::std::complex const & rhs) { return do_subtract(rhs, detail::is_trivial_arithmetic_type()); } template BOOST_MATH_CXX14_CONSTEXPR quaternion & operator -= (quaternion const & rhs) { return do_subtract(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator *= (T const & rhs) { return do_multiply(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator *= (::std::complex const & rhs) { T ar = rhs.real(); T br = rhs.imag(); quaternion result(a*ar - b*br, a*br + b*ar, c*ar + d*br, -c*br+d*ar); swap(result); return(*this); } template BOOST_MATH_CXX14_CONSTEXPR quaternion & operator *= (quaternion const & rhs) { T ar = static_cast(rhs.R_component_1()); T br = static_cast(rhs.R_component_2()); T cr = static_cast(rhs.R_component_3()); T dr = static_cast(rhs.R_component_4()); quaternion result(a*ar - b*br - c*cr - d*dr, a*br + b*ar + c*dr - d*cr, a*cr - b*dr + c*ar + d*br, a*dr + b*cr - c*br + d*ar); swap(result); return(*this); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator /= (T const & rhs) { return do_divide(rhs, detail::is_trivial_arithmetic_type()); } BOOST_MATH_CXX14_CONSTEXPR quaternion & operator /= (::std::complex const & rhs) { T ar = rhs.real(); T br = rhs.imag(); T denominator = ar*ar+br*br; quaternion result((+a*ar + b*br) / denominator, (-a*br + b*ar) / denominator, (+c*ar - d*br) / denominator, (+c*br + d*ar) / denominator); swap(result); return(*this); } template BOOST_MATH_CXX14_CONSTEXPR quaternion & operator /= (quaternion const & rhs) { T ar = static_cast(rhs.R_component_1()); T br = static_cast(rhs.R_component_2()); T cr = static_cast(rhs.R_component_3()); T dr = static_cast(rhs.R_component_4()); T denominator = ar*ar+br*br+cr*cr+dr*dr; quaternion result((+a*ar+b*br+c*cr+d*dr)/denominator, (-a*br+b*ar-c*dr+d*cr)/denominator, (-a*cr+b*dr+c*ar-d*br)/denominator, (-a*dr-b*cr+c*br+d*ar)/denominator); swap(result); return(*this); } private: T a, b, c, d; }; // swap: template BOOST_MATH_CXX14_CONSTEXPR void swap(quaternion& a, quaternion& b) { a.swap(b); } // operator+ template inline constexpr typename std::enable_if::value, quaternion >::type operator + (const quaternion& a, const T2& b) { return quaternion(static_cast(a.R_component_1() + b), a.R_component_2(), a.R_component_3(), a.R_component_4()); } template inline constexpr typename std::enable_if::value, quaternion >::type operator + (const T1& a, const quaternion& b) { return quaternion(static_cast(b.R_component_1() + a), b.R_component_2(), b.R_component_3(), b.R_component_4()); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator + (const quaternion& a, const std::complex& b) { return quaternion(a.R_component_1() + std::real(b), a.R_component_2() + std::imag(b), a.R_component_3(), a.R_component_4()); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator + (const std::complex& a, const quaternion& b) { return quaternion(b.R_component_1() + std::real(a), b.R_component_2() + std::imag(a), b.R_component_3(), b.R_component_4()); } template inline constexpr quaternion operator + (const quaternion& a, const quaternion& b) { return quaternion(a.R_component_1() + b.R_component_1(), a.R_component_2() + b.R_component_2(), a.R_component_3() + b.R_component_3(), a.R_component_4() + b.R_component_4()); } // operator- template inline constexpr typename std::enable_if::value, quaternion >::type operator - (const quaternion& a, const T2& b) { return quaternion(static_cast(a.R_component_1() - b), a.R_component_2(), a.R_component_3(), a.R_component_4()); } template inline constexpr typename std::enable_if::value, quaternion >::type operator - (const T1& a, const quaternion& b) { return quaternion(static_cast(a - b.R_component_1()), -b.R_component_2(), -b.R_component_3(), -b.R_component_4()); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator - (const quaternion& a, const std::complex& b) { return quaternion(a.R_component_1() - std::real(b), a.R_component_2() - std::imag(b), a.R_component_3(), a.R_component_4()); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator - (const std::complex& a, const quaternion& b) { return quaternion(std::real(a) - b.R_component_1(), std::imag(a) - b.R_component_2(), -b.R_component_3(), -b.R_component_4()); } template inline constexpr quaternion operator - (const quaternion& a, const quaternion& b) { return quaternion(a.R_component_1() - b.R_component_1(), a.R_component_2() - b.R_component_2(), a.R_component_3() - b.R_component_3(), a.R_component_4() - b.R_component_4()); } // operator* template inline constexpr typename std::enable_if::value, quaternion >::type operator * (const quaternion& a, const T2& b) { return quaternion(static_cast(a.R_component_1() * b), a.R_component_2() * b, a.R_component_3() * b, a.R_component_4() * b); } template inline constexpr typename std::enable_if::value, quaternion >::type operator * (const T1& a, const quaternion& b) { return quaternion(static_cast(a * b.R_component_1()), a * b.R_component_2(), a * b.R_component_3(), a * b.R_component_4()); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator * (const quaternion& a, const std::complex& b) { quaternion result(a); result *= b; return result; } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator * (const std::complex& a, const quaternion& b) { quaternion result(a); result *= b; return result; } template inline BOOST_MATH_CXX14_CONSTEXPR quaternion operator * (const quaternion& a, const quaternion& b) { quaternion result(a); result *= b; return result; } // operator/ template inline constexpr typename std::enable_if::value, quaternion >::type operator / (const quaternion& a, const T2& b) { return quaternion(a.R_component_1() / b, a.R_component_2() / b, a.R_component_3() / b, a.R_component_4() / b); } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator / (const T1& a, const quaternion& b) { quaternion result(a); result /= b; return result; } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator / (const quaternion& a, const std::complex& b) { quaternion result(a); result /= b; return result; } template inline BOOST_MATH_CXX14_CONSTEXPR typename std::enable_if::value, quaternion >::type operator / (const std::complex& a, const quaternion& b) { quaternion result(a); result /= b; return result; } template inline BOOST_MATH_CXX14_CONSTEXPR quaternion operator / (const quaternion& a, const quaternion& b) { quaternion result(a); result /= b; return result; } template inline constexpr const quaternion& operator + (quaternion const & q) { return q; } template inline constexpr quaternion operator - (quaternion const & q) { return(quaternion(-q.R_component_1(),-q.R_component_2(),-q.R_component_3(),-q.R_component_4())); } template inline constexpr typename std::enable_if::value, bool>::type operator == (R const & lhs, quaternion const & rhs) { return ( (rhs.R_component_1() == lhs)&& (rhs.R_component_2() == static_cast(0))&& (rhs.R_component_3() == static_cast(0))&& (rhs.R_component_4() == static_cast(0)) ); } template inline constexpr typename std::enable_if::value, bool>::type operator == (quaternion const & lhs, R const & rhs) { return rhs == lhs; } template inline constexpr bool operator == (::std::complex const & lhs, quaternion const & rhs) { return ( (rhs.R_component_1() == lhs.real())&& (rhs.R_component_2() == lhs.imag())&& (rhs.R_component_3() == static_cast(0))&& (rhs.R_component_4() == static_cast(0)) ); } template inline constexpr bool operator == (quaternion const & lhs, ::std::complex const & rhs) { return rhs == lhs; } template inline constexpr bool operator == (quaternion const & lhs, quaternion const & rhs) { return ( (rhs.R_component_1() == lhs.R_component_1())&& (rhs.R_component_2() == lhs.R_component_2())&& (rhs.R_component_3() == lhs.R_component_3())&& (rhs.R_component_4() == lhs.R_component_4()) ); } template inline constexpr bool operator != (R const & lhs, quaternion const & rhs) { return !(lhs == rhs); } template inline constexpr bool operator != (quaternion const & lhs, R const & rhs) { return !(lhs == rhs); } template inline constexpr bool operator != (::std::complex const & lhs, quaternion const & rhs) { return !(lhs == rhs); } template inline constexpr bool operator != (quaternion const & lhs, ::std::complex const & rhs) { return !(lhs == rhs); } template inline constexpr bool operator != (quaternion const & lhs, quaternion const & rhs) { return !(lhs == rhs); } // Note: we allow the following formats, with a, b, c, and d reals // a // (a), (a,b), (a,b,c), (a,b,c,d) // (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b),(c,d)) template ::std::basic_istream & operator >> ( ::std::basic_istream & is, quaternion & q) { const ::std::ctype & ct = ::std::use_facet< ::std::ctype >(is.getloc()); T a = T(); T b = T(); T c = T(); T d = T(); ::std::complex u = ::std::complex(); ::std::complex v = ::std::complex(); charT ch = charT(); char cc; is >> ch; // get the first lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == '(') // read "(", possible: (a), (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,)) { is >> ch; // get the second lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == '(') // read "((", possible: ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,)) { is.putback(ch); is >> u; // we extract the first and second components a = u.real(); b = u.imag(); if (!is.good()) goto finish; is >> ch; // get the next lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: ((a)) or ((a,b)) { q = quaternion(a,b); } else if (cc == ',') // read "((a)," or "((a,b),", possible: ((a),c), ((a),(c)), ((a),(c,d)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,)) { is >> v; // we extract the third and fourth components c = v.real(); d = v.imag(); if (!is.good()) goto finish; is >> ch; // get the last lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: ((a),c), ((a),(c)), ((a),(c,d)), ((a,b),c), ((a,b),(c)) or ((a,b,),(c,d,)) { q = quaternion(a,b,c,d); } else // error { is.setstate(::std::ios_base::failbit); } } else // error { is.setstate(::std::ios_base::failbit); } } else // read "(a", possible: (a), (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d)) { is.putback(ch); is >> a; // we extract the first component if (!is.good()) goto finish; is >> ch; // get the third lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: (a) { q = quaternion(a); } else if (cc == ',') // read "(a,", possible: (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d)) { is >> ch; // get the fourth lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == '(') // read "(a,(", possible: (a,(c)), (a,(c,d)) { is.putback(ch); is >> v; // we extract the third and fourth component c = v.real(); d = v.imag(); if (!is.good()) goto finish; is >> ch; // get the ninth lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: (a,(c)) or (a,(c,d)) { q = quaternion(a,b,c,d); } else // error { is.setstate(::std::ios_base::failbit); } } else // read "(a,b", possible: (a,b), (a,b,c), (a,b,c,d) { is.putback(ch); is >> b; // we extract the second component if (!is.good()) goto finish; is >> ch; // get the fifth lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: (a,b) { q = quaternion(a,b); } else if (cc == ',') // read "(a,b,", possible: (a,b,c), (a,b,c,d) { is >> c; // we extract the third component if (!is.good()) goto finish; is >> ch; // get the seventh lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: (a,b,c) { q = quaternion(a,b,c); } else if (cc == ',') // read "(a,b,c,", possible: (a,b,c,d) { is >> d; // we extract the fourth component if (!is.good()) goto finish; is >> ch; // get the ninth lexeme if (!is.good()) goto finish; cc = ct.narrow(ch, char()); if (cc == ')') // format: (a,b,c,d) { q = quaternion(a,b,c,d); } else // error { is.setstate(::std::ios_base::failbit); } } else // error { is.setstate(::std::ios_base::failbit); } } else // error { is.setstate(::std::ios_base::failbit); } } } else // error { is.setstate(::std::ios_base::failbit); } } } else // format: a { is.putback(ch); is >> a; // we extract the first component if (!is.good()) goto finish; q = quaternion(a); } finish: return(is); } template ::std::basic_ostream & operator << ( ::std::basic_ostream & os, quaternion const & q) { ::std::basic_ostringstream s; s.flags(os.flags()); s.imbue(os.getloc()); s.precision(os.precision()); s << '(' << q.R_component_1() << ',' << q.R_component_2() << ',' << q.R_component_3() << ',' << q.R_component_4() << ')'; return os << s.str(); } // values template inline constexpr T real(quaternion const & q) { return(q.real()); } template inline constexpr quaternion unreal(quaternion const & q) { return(q.unreal()); } template inline T sup(quaternion const & q) { using ::std::abs; return (std::max)((std::max)(abs(q.R_component_1()), abs(q.R_component_2())), (std::max)(abs(q.R_component_3()), abs(q.R_component_4()))); } template inline T l1(quaternion const & q) { using ::std::abs; return abs(q.R_component_1()) + abs(q.R_component_2()) + abs(q.R_component_3()) + abs(q.R_component_4()); } template inline T abs(quaternion const & q) { using ::std::abs; using ::std::sqrt; T maxim = sup(q); // overflow protection if (maxim == static_cast(0)) { return(maxim); } else { T mixam = static_cast(1)/maxim; // prefer multiplications over divisions T a = q.R_component_1() * mixam; T b = q.R_component_2() * mixam; T c = q.R_component_3() * mixam; T d = q.R_component_4() * mixam; a *= a; b *= b; c *= c; d *= d; return(maxim * sqrt(a + b + c + d)); } //return(sqrt(norm(q))); } // Note: This is the Cayley norm, not the Euclidean norm... template inline BOOST_MATH_CXX14_CONSTEXPR T norm(quaternionconst & q) { return(real(q*conj(q))); } template inline constexpr quaternion conj(quaternion const & q) { return(quaternion( +q.R_component_1(), -q.R_component_2(), -q.R_component_3(), -q.R_component_4())); } template inline quaternion spherical( T const & rho, T const & theta, T const & phi1, T const & phi2) { using ::std::cos; using ::std::sin; //T a = cos(theta)*cos(phi1)*cos(phi2); //T b = sin(theta)*cos(phi1)*cos(phi2); //T c = sin(phi1)*cos(phi2); //T d = sin(phi2); T courrant = static_cast(1); T d = sin(phi2); courrant *= cos(phi2); T c = sin(phi1)*courrant; courrant *= cos(phi1); T b = sin(theta)*courrant; T a = cos(theta)*courrant; return(rho*quaternion(a,b,c,d)); } template inline quaternion semipolar( T const & rho, T const & alpha, T const & theta1, T const & theta2) { using ::std::cos; using ::std::sin; T a = cos(alpha)*cos(theta1); T b = cos(alpha)*sin(theta1); T c = sin(alpha)*cos(theta2); T d = sin(alpha)*sin(theta2); return(rho*quaternion(a,b,c,d)); } template inline quaternion multipolar( T const & rho1, T const & theta1, T const & rho2, T const & theta2) { using ::std::cos; using ::std::sin; T a = rho1*cos(theta1); T b = rho1*sin(theta1); T c = rho2*cos(theta2); T d = rho2*sin(theta2); return(quaternion(a,b,c,d)); } template inline quaternion cylindrospherical( T const & t, T const & radius, T const & longitude, T const & latitude) { using ::std::cos; using ::std::sin; T b = radius*cos(longitude)*cos(latitude); T c = radius*sin(longitude)*cos(latitude); T d = radius*sin(latitude); return(quaternion(t,b,c,d)); } template inline quaternion cylindrical(T const & r, T const & angle, T const & h1, T const & h2) { using ::std::cos; using ::std::sin; T a = r*cos(angle); T b = r*sin(angle); return(quaternion(a,b,h1,h2)); } // transcendentals // (please see the documentation) template inline quaternion exp(quaternion const & q) { using ::std::exp; using ::std::cos; using ::boost::math::sinc_pi; T u = exp(real(q)); T z = abs(unreal(q)); T w = sinc_pi(z); return(u*quaternion(cos(z), w*q.R_component_2(), w*q.R_component_3(), w*q.R_component_4())); } template inline quaternion cos(quaternion const & q) { using ::std::sin; using ::std::cos; using ::std::cosh; using ::boost::math::sinhc_pi; T z = abs(unreal(q)); T w = -sin(q.real())*sinhc_pi(z); return(quaternion(cos(q.real())*cosh(z), w*q.R_component_2(), w*q.R_component_3(), w*q.R_component_4())); } template inline quaternion sin(quaternion const & q) { using ::std::sin; using ::std::cos; using ::std::cosh; using ::boost::math::sinhc_pi; T z = abs(unreal(q)); T w = +cos(q.real())*sinhc_pi(z); return(quaternion(sin(q.real())*cosh(z), w*q.R_component_2(), w*q.R_component_3(), w*q.R_component_4())); } template inline quaternion tan(quaternion const & q) { return(sin(q)/cos(q)); } template inline quaternion cosh(quaternion const & q) { return((exp(+q)+exp(-q))/static_cast(2)); } template inline quaternion sinh(quaternion const & q) { return((exp(+q)-exp(-q))/static_cast(2)); } template inline quaternion tanh(quaternion const & q) { return(sinh(q)/cosh(q)); } template quaternion pow(quaternion const & q, int n) { if (n > 1) { int m = n>>1; quaternion result = pow(q, m); result *= result; if (n != (m<<1)) { result *= q; // n odd } return(result); } else if (n == 1) { return(q); } else if (n == 0) { return(quaternion(static_cast(1))); } else /* n < 0 */ { return(pow(quaternion(static_cast(1))/q,-n)); } } } } #endif /* BOOST_QUATERNION_HPP */