// boost heap: skew heap // // Copyright (C) 2010 Tim Blechmann // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_HEAP_SKEW_HEAP_HPP #define BOOST_HEAP_SKEW_HEAP_HPP #include #include #include #include #include #include #include #include #include #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif #ifndef BOOST_DOXYGEN_INVOKED #ifdef BOOST_HEAP_SANITYCHECKS #define BOOST_HEAP_ASSERT BOOST_ASSERT #else #define BOOST_HEAP_ASSERT(expression) #endif #endif namespace boost { namespace heap { namespace detail { template struct parent_holder { parent_holder(void): parent_(NULL) {} void set_parent(node_pointer parent) { BOOST_HEAP_ASSERT(static_cast(this) != parent); parent_ = parent; } node_pointer get_parent(void) const { return parent_; } node_pointer parent_; }; template struct parent_holder { void set_parent(node_pointer parent) {} node_pointer get_parent(void) const { return NULL; } }; template struct skew_heap_node: parent_holder*, store_parent_pointer> { typedef parent_holder*, store_parent_pointer> super_t; typedef boost::array child_list_type; typedef typename child_list_type::iterator child_iterator; typedef typename child_list_type::const_iterator const_child_iterator; skew_heap_node(value_type const & v): value(v) { children.assign(0); } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES skew_heap_node(value_type && v): value(v) { children.assign(0); } #endif template skew_heap_node (skew_heap_node const & rhs, Alloc & allocator, skew_heap_node * parent): value(rhs.value) { super_t::set_parent(parent); node_cloner cloner(allocator); clone_child(0, rhs, cloner); clone_child(1, rhs, cloner); } template void clone_child(int index, skew_heap_node const & rhs, Cloner & cloner) { if (rhs.children[index]) children[index] = cloner(*rhs.children[index], this); else children[index] = NULL; } template void clear_subtree(Alloc & alloc) { node_disposer disposer(alloc); dispose_child(children[0], disposer); dispose_child(children[1], disposer); } template void dispose_child(skew_heap_node * node, Disposer & disposer) { if (node) disposer(node); } std::size_t count_children(void) const { size_t ret = 1; if (children[0]) ret += children[0]->count_children(); if (children[1]) ret += children[1]->count_children(); return ret; } template bool is_heap(typename HeapBase::value_compare const & cmp) const { for (const_child_iterator it = children.begin(); it != children.end(); ++it) { const skew_heap_node * child = *it; if (child == NULL) continue; if (store_parent_pointer) BOOST_HEAP_ASSERT(child->get_parent() == this); if (cmp(HeapBase::get_value(value), HeapBase::get_value(child->value)) || !child->is_heap(cmp)) return false; } return true; } value_type value; boost::array children; }; typedef parameter::parameters, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional, boost::parameter::optional > skew_heap_signature; template struct make_skew_heap_base { static const bool constant_time_size = parameter::binding::type::value; typedef typename make_heap_base::type base_type; typedef typename make_heap_base::allocator_argument allocator_argument; typedef typename make_heap_base::compare_argument compare_argument; static const bool is_mutable = extract_mutable::value; static const bool store_parent_pointer = parameter::binding::type::value || is_mutable; typedef skew_heap_node node_type; typedef typename boost::allocator_rebind::type allocator_type; struct type: base_type, allocator_type { type(compare_argument const & arg): base_type(arg) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES type(type && rhs): base_type(std::move(static_cast(rhs))), allocator_type(std::move(static_cast(rhs))) {} type(type const & rhs): base_type(rhs), allocator_type(rhs) {} type & operator=(type && rhs) { base_type::operator=(std::move(static_cast(rhs))); allocator_type::operator=(std::move(static_cast(rhs))); return *this; } type & operator=(type const & rhs) { base_type::operator=(static_cast(rhs)); allocator_type::operator=(static_cast(rhs)); return *this; } #endif }; }; } /* namespace detail */ /** * \class skew_heap * \brief skew heap * * * The template parameter T is the type to be managed by the container. * The user can specify additional options and if no options are provided default options are used. * * The container supports the following options: * - \c boost::heap::compare<>, defaults to \c compare > * - \c boost::heap::stable<>, defaults to \c stable * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type * - \c boost::heap::allocator<>, defaults to \c allocator > * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size * - \c boost::heap::store_parent_pointer<>, defaults to \c store_parent_pointer. Maintaining a parent pointer adds some * maintenance and size overhead, but iterating a heap is more efficient. * - \c boost::heap::mutable<>, defaults to \c mutable. * */ #ifdef BOOST_DOXYGEN_INVOKED template #else template #endif class skew_heap: private detail::make_skew_heap_base::type >::type { typedef typename detail::skew_heap_signature::bind::type bound_args; typedef detail::make_skew_heap_base base_maker; typedef typename base_maker::type super_t; typedef typename super_t::internal_type internal_type; typedef typename super_t::size_holder_type size_holder; typedef typename base_maker::allocator_argument allocator_argument; static const bool store_parent_pointer = base_maker::store_parent_pointer; template friend struct heap_merge_emulate; struct implementation_defined: detail::extract_allocator_types { typedef T value_type; typedef typename base_maker::compare_argument value_compare; typedef typename base_maker::allocator_type allocator_type; typedef typename base_maker::node_type node; typedef typename boost::allocator_pointer::type node_pointer; typedef typename boost::allocator_const_pointer::type const_node_pointer; typedef detail::value_extractor value_extractor; typedef boost::array child_list_type; typedef typename child_list_type::iterator child_list_iterator; typedef typename boost::conditional >, detail::tree_iterator, true, false, value_compare > >::type iterator; typedef iterator const_iterator; typedef detail::tree_iterator, true, true, value_compare > ordered_iterator; typedef typename detail::extract_allocator_types::reference reference; typedef detail::node_handle handle_type; }; typedef typename implementation_defined::value_extractor value_extractor; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_pointer node_pointer; public: typedef T value_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::allocator_type allocator_type; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; /// \copydoc boost::heap::priority_queue::iterator typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::ordered_iterator ordered_iterator; static const bool constant_time_size = super_t::constant_time_size; static const bool has_ordered_iterators = true; static const bool is_mergable = true; static const bool is_stable = detail::extract_stable::value; static const bool has_reserve = false; static const bool is_mutable = detail::extract_mutable::value; typedef typename boost::conditional::type handle_type; /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &) explicit skew_heap(value_compare const & cmp = value_compare()): super_t(cmp), root(NULL) {} /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &) skew_heap(skew_heap const & rhs): super_t(rhs), root(0) { if (rhs.empty()) return; clone_tree(rhs); size_holder::set_size(rhs.get_size()); } /// \copydoc boost::heap::priority_queue::operator=(priority_queue const & rhs) skew_heap & operator=(skew_heap const & rhs) { clear(); size_holder::set_size(rhs.get_size()); static_cast(*this) = rhs; clone_tree(rhs); return *this; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&) skew_heap(skew_heap && rhs): super_t(std::move(rhs)), root(rhs.root) { rhs.root = NULL; } /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&) skew_heap & operator=(skew_heap && rhs) { super_t::operator=(std::move(rhs)); root = rhs.root; rhs.root = NULL; return *this; } #endif ~skew_heap(void) { clear(); } /** * \b Effects: Adds a new element to the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ typename boost::conditional::type push(value_type const & v) { typedef typename boost::conditional::type push_helper; return push_helper::push(this, v); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) /** * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. * * \b Complexity: Logarithmic (amortized). * * */ template typename boost::conditional::type emplace(Args&&... args) { typedef typename boost::conditional::type push_helper; return push_helper::emplace(this, std::forward(args)...); } #endif /// \copydoc boost::heap::priority_queue::empty bool empty(void) const { return root == NULL; } /// \copydoc boost::heap::binomial_heap::size size_type size(void) const { if (constant_time_size) return size_holder::get_size(); if (root == NULL) return 0; else return root->count_children(); } /// \copydoc boost::heap::priority_queue::max_size size_type max_size(void) const { const allocator_type& alloc = *this; return boost::allocator_max_size(alloc); } /// \copydoc boost::heap::priority_queue::clear void clear(void) { if (empty()) return; root->template clear_subtree(*this); root->~node(); allocator_type& alloc = *this; alloc.deallocate(root, 1); root = NULL; size_holder::set_size(0); } /// \copydoc boost::heap::priority_queue::get_allocator allocator_type get_allocator(void) const { return *this; } /// \copydoc boost::heap::priority_queue::swap void swap(skew_heap & rhs) { super_t::swap(rhs); std::swap(root, rhs.root); } /// \copydoc boost::heap::priority_queue::top const_reference top(void) const { BOOST_ASSERT(!empty()); return super_t::get_value(root->value); } /** * \b Effects: Removes the top element from the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ void pop(void) { BOOST_ASSERT(!empty()); node_pointer top = root; root = merge_children(root); size_holder::decrement(); if (root) BOOST_HEAP_ASSERT(root->get_parent() == NULL); else BOOST_HEAP_ASSERT(size_holder::get_size() == 0); top->~node(); allocator_type& alloc = *this; alloc.deallocate(top, 1); sanity_check(); } /// \copydoc boost::heap::priority_queue::begin iterator begin(void) const { return iterator(root, super_t::value_comp()); } /// \copydoc boost::heap::priority_queue::end iterator end(void) const { return iterator(); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_begin(void) const { return ordered_iterator(root, super_t::value_comp()); } /// \copydoc boost::heap::fibonacci_heap::ordered_begin ordered_iterator ordered_end(void) const { return ordered_iterator(0, super_t::value_comp()); } /** * \b Effects: Merge all elements from rhs into this * * \b Complexity: Logarithmic (amortized). * * */ void merge(skew_heap & rhs) { if (rhs.empty()) return; merge_node(rhs.root); size_holder::add(rhs.get_size()); rhs.set_size(0); rhs.root = NULL; sanity_check(); super_t::set_stability_count((std::max)(super_t::get_stability_count(), rhs.get_stability_count())); rhs.set_stability_count(0); } /// \copydoc boost::heap::priority_queue::value_comp value_compare const & value_comp(void) const { return super_t::value_comp(); } /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const template bool operator<(HeapType const & rhs) const { return detail::heap_compare(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const template bool operator>(HeapType const & rhs) const { return detail::heap_compare(rhs, *this); } /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const template bool operator>=(HeapType const & rhs) const { return !operator<(rhs); } /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const template bool operator<=(HeapType const & rhs) const { return !operator>(rhs); } /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const template bool operator==(HeapType const & rhs) const { return detail::heap_equality(*this, rhs); } /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const template bool operator!=(HeapType const & rhs) const { return !(*this == rhs); } /// \copydoc boost::heap::d_ary_heap::s_handle_from_iterator static handle_type s_handle_from_iterator(iterator const & it) { node * ptr = const_cast(it.get_node()); return handle_type(ptr); } /** * \b Effects: Removes the element handled by \c handle from the priority_queue. * * \b Complexity: Logarithmic (amortized). * */ void erase (handle_type object) { BOOST_STATIC_ASSERT(is_mutable); node_pointer this_node = object.node_; unlink_node(this_node); size_holder::decrement(); sanity_check(); this_node->~node(); allocator_type& alloc = *this; alloc.deallocate(this_node, 1); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * */ void update (handle_type handle, const_reference v) { BOOST_STATIC_ASSERT(is_mutable); if (super_t::operator()(super_t::get_value(handle.node_->value), v)) increase(handle, v); else decrease(handle, v); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void update (handle_type handle) { BOOST_STATIC_ASSERT(is_mutable); node_pointer this_node = handle.node_; if (this_node->get_parent()) { if (super_t::operator()(super_t::get_value(this_node->get_parent()->value), super_t::get_value(this_node->value))) increase(handle); else decrease(handle); } else decrease(handle); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be greater than the current one * */ void increase (handle_type handle, const_reference v) { BOOST_STATIC_ASSERT(is_mutable); handle.node_->value = super_t::make_node(v); increase(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void increase (handle_type handle) { BOOST_STATIC_ASSERT(is_mutable); node_pointer this_node = handle.node_; if (this_node == root) return; node_pointer parent = this_node->get_parent(); if (this_node == parent->children[0]) parent->children[0] = NULL; else parent->children[1] = NULL; this_node->set_parent(NULL); merge_node(this_node); } /** * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be less than the current one * */ void decrease (handle_type handle, const_reference v) { BOOST_STATIC_ASSERT(is_mutable); handle.node_->value = super_t::make_node(v); decrease(handle); } /** * \b Effects: Updates the heap after the element handled by \c handle has been changed. * * \b Complexity: Logarithmic (amortized). * * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined! * */ void decrease (handle_type handle) { BOOST_STATIC_ASSERT(is_mutable); node_pointer this_node = handle.node_; unlink_node(this_node); this_node->children.assign(0); this_node->set_parent(NULL); merge_node(this_node); } private: #if !defined(BOOST_DOXYGEN_INVOKED) struct push_void { static void push(skew_heap * self, const_reference v) { self->push_internal(v); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template static void emplace(skew_heap * self, Args&&... args) { self->emplace_internal(std::forward(args)...); } #endif }; struct push_handle { static handle_type push(skew_heap * self, const_reference v) { return handle_type(self->push_internal(v)); } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template static handle_type emplace(skew_heap * self, Args&&... args) { return handle_type(self->emplace_internal(std::forward(args)...)); } #endif }; node_pointer push_internal(const_reference v) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate(1); new(n) node(super_t::make_node(v)); merge_node(n); return n; } #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template node_pointer emplace_internal(Args&&... args) { size_holder::increment(); allocator_type& alloc = *this; node_pointer n = alloc.allocate(1); new(n) node(super_t::make_node(std::forward(args)...)); merge_node(n); return n; } #endif void unlink_node(node_pointer node) { node_pointer parent = node->get_parent(); node_pointer merged_children = merge_children(node); if (parent) { if (node == parent->children[0]) parent->children[0] = merged_children; else parent->children[1] = merged_children; } else root = merged_children; } void clone_tree(skew_heap const & rhs) { BOOST_HEAP_ASSERT(root == NULL); if (rhs.empty()) return; allocator_type& alloc = *this; root = alloc.allocate(1); new(root) node(*rhs.root, alloc, NULL); } void merge_node(node_pointer other) { BOOST_HEAP_ASSERT(other); if (root != NULL) root = merge_nodes(root, other, NULL); else root = other; } node_pointer merge_nodes(node_pointer node1, node_pointer node2, node_pointer new_parent) { if (node1 == NULL) { if (node2) node2->set_parent(new_parent); return node2; } if (node2 == NULL) { node1->set_parent(new_parent); return node1; } node_pointer merged = merge_nodes_recursive(node1, node2, new_parent); return merged; } node_pointer merge_children(node_pointer node) { node_pointer parent = node->get_parent(); node_pointer merged_children = merge_nodes(node->children[0], node->children[1], parent); return merged_children; } node_pointer merge_nodes_recursive(node_pointer node1, node_pointer node2, node_pointer new_parent) { if (super_t::operator()(node1->value, node2->value)) std::swap(node1, node2); node * parent = node1; node * child = node2; if (parent->children[1]) { node * merged = merge_nodes(parent->children[1], child, parent); parent->children[1] = merged; merged->set_parent(parent); } else { parent->children[1] = child; child->set_parent(parent); } std::swap(parent->children[0], parent->children[1]); parent->set_parent(new_parent); return parent; } void sanity_check(void) { #ifdef BOOST_HEAP_SANITYCHECKS if (root) BOOST_HEAP_ASSERT( root->template is_heap(super_t::value_comp()) ); if (constant_time_size) { size_type stored_size = size_holder::get_size(); size_type counted_size; if (root == NULL) counted_size = 0; else counted_size = root->count_children(); BOOST_HEAP_ASSERT(counted_size == stored_size); } #endif } node_pointer root; #endif }; } /* namespace heap */ } /* namespace boost */ #undef BOOST_HEAP_ASSERT #endif /* BOOST_HEAP_SKEW_HEAP_HPP */