// (C) Copyright 2007-2009 Andrew Sutton // // Use, modification and distribution are subject to the // Boost Software License, Version 1.0 (See accompanying file // LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GRAPH_CYCLE_HPP #define BOOST_GRAPH_CYCLE_HPP #include #include #include #include #include #include #include namespace boost { namespace concepts { BOOST_concept(CycleVisitor, (Visitor)(Path)(Graph)) { BOOST_CONCEPT_USAGE(CycleVisitor) { vis.cycle(p, g); } private: Visitor vis; Graph g; Path p; }; } /* namespace concepts */ using concepts::CycleVisitorConcept; } /* namespace boost */ #include namespace boost { // The implementation of this algorithm is a reproduction of the Teirnan // approach for directed graphs: bibtex follows // // @article{362819, // author = {James C. Tiernan}, // title = {An efficient search algorithm to find the elementary // circuits of a graph}, journal = {Commun. ACM}, volume = {13}, number // = {12}, year = {1970}, issn = {0001-0782}, pages = {722--726}, doi = // {http://doi.acm.org/10.1145/362814.362819}, // publisher = {ACM Press}, // address = {New York, NY, USA}, // } // // It should be pointed out that the author does not provide a complete analysis // for either time or space. This is in part, due to the fact that it's a fairly // input sensitive problem related to the density and construction of the graph, // not just its size. // // I've also taken some liberties with the interpretation of the algorithm - // I've basically modernized it to use real data structures (no more arrays and // matrices). Oh... and there's explicit control structures - not just gotos. // // The problem is definitely NP-complete, an unbounded implementation of this // will probably run for quite a while on a large graph. The conclusions // of this paper also reference a Paton algorithm for undirected graphs as being // much more efficient (apparently based on spanning trees). Although not // implemented, it can be found here: // // @article{363232, // author = {Keith Paton}, // title = {An algorithm for finding a fundamental set of cycles of a // graph}, journal = {Commun. ACM}, volume = {12}, number = {9}, year = // {1969}, issn = {0001-0782}, pages = {514--518}, doi = // {http://doi.acm.org/10.1145/363219.363232}, // publisher = {ACM Press}, // address = {New York, NY, USA}, // } /** * The default cycle visitor provides an empty visit function for cycle * visitors. */ struct cycle_visitor { template < typename Path, typename Graph > inline void cycle(const Path& p, const Graph& g) { } }; /** * The min_max_cycle_visitor simultaneously records the minimum and maximum * cycles in a graph. */ struct min_max_cycle_visitor { min_max_cycle_visitor(std::size_t& min_, std::size_t& max_) : minimum(min_), maximum(max_) { } template < typename Path, typename Graph > inline void cycle(const Path& p, const Graph& g) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); std::size_t len = p.size(); minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION(minimum, len); maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION(maximum, len); } std::size_t& minimum; std::size_t& maximum; }; inline min_max_cycle_visitor find_min_max_cycle( std::size_t& min_, std::size_t& max_) { return min_max_cycle_visitor(min_, max_); } namespace detail { template < typename Graph, typename Path > inline bool is_vertex_in_path(const Graph&, typename graph_traits< Graph >::vertex_descriptor v, const Path& p) { return (std::find(p.begin(), p.end(), v) != p.end()); } template < typename Graph, typename ClosedMatrix > inline bool is_path_closed(const Graph& g, typename graph_traits< Graph >::vertex_descriptor u, typename graph_traits< Graph >::vertex_descriptor v, const ClosedMatrix& closed) { // the path from u to v is closed if v can be found in the list // of closed vertices associated with u. typedef typename ClosedMatrix::const_reference Row; Row r = closed[get(vertex_index, g, u)]; if (find(r.begin(), r.end(), v) != r.end()) { return true; } return false; } template < typename Graph, typename Path, typename ClosedMatrix > inline bool can_extend_path(const Graph& g, typename graph_traits< Graph >::edge_descriptor e, const Path& p, const ClosedMatrix& m) { BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >)); BOOST_CONCEPT_ASSERT((VertexIndexGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; // get the vertices in question Vertex u = source(e, g), v = target(e, g); // conditions for allowing a traversal along this edge are: // 1. the index of v must be greater than that at which the // path is rooted (p.front()). // 2. the vertex v cannot already be in the path // 3. the vertex v cannot be closed to the vertex u bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v); bool path = !is_vertex_in_path(g, v, p); bool closed = !is_path_closed(g, u, v, m); return indices && path && closed; } template < typename Graph, typename Path > inline bool can_wrap_path(const Graph& g, const Path& p) { BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef typename graph_traits< Graph >::out_edge_iterator OutIterator; // iterate over the out-edges of the back, looking for the // front of the path. also, we can't travel along the same // edge that we did on the way here, but we don't quite have the // stringent requirements that we do in can_extend_path(). Vertex u = p.back(), v = p.front(); OutIterator i, end; for (boost::tie(i, end) = out_edges(u, g); i != end; ++i) { if ((target(*i, g) == v)) { return true; } } return false; } template < typename Graph, typename Path, typename ClosedMatrix > inline typename graph_traits< Graph >::vertex_descriptor extend_path( const Graph& g, Path& p, ClosedMatrix& closed) { BOOST_CONCEPT_ASSERT((IncidenceGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef typename graph_traits< Graph >::out_edge_iterator OutIterator; // get the current vertex Vertex u = p.back(); Vertex ret = graph_traits< Graph >::null_vertex(); // AdjacencyIterator i, end; OutIterator i, end; for (boost::tie(i, end) = out_edges(u, g); i != end; ++i) { Vertex v = target(*i, g); // if we can actually extend along this edge, // then that's what we want to do if (can_extend_path(g, *i, p, closed)) { p.push_back(v); // add the vertex to the path ret = v; break; } } return ret; } template < typename Graph, typename Path, typename ClosedMatrix > inline bool exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed) { BOOST_CONCEPT_ASSERT((GraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; // if there's more than one vertex in the path, this closes // of some possible routes and returns true. otherwise, if there's // only one vertex left, the vertex has been used up if (p.size() > 1) { // get the last and second to last vertices, popping the last // vertex off the path Vertex last, prev; last = p.back(); p.pop_back(); prev = p.back(); // reset the closure for the last vertex of the path and // indicate that the last vertex in p is now closed to // the next-to-last vertex in p closed[get(vertex_index, g, last)].clear(); closed[get(vertex_index, g, prev)].push_back(last); return true; } else { return false; } } template < typename Graph, typename Visitor > inline void all_cycles_from_vertex(const Graph& g, typename graph_traits< Graph >::vertex_descriptor v, Visitor vis, std::size_t minlen, std::size_t maxlen) { BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_descriptor Vertex; typedef std::vector< Vertex > Path; BOOST_CONCEPT_ASSERT((CycleVisitorConcept< Visitor, Path, Graph >)); typedef std::vector< Vertex > VertexList; typedef std::vector< VertexList > ClosedMatrix; Path p; ClosedMatrix closed(num_vertices(g), VertexList()); Vertex null = graph_traits< Graph >::null_vertex(); // each path investigation starts at the ith vertex p.push_back(v); while (1) { // extend the path until we've reached the end or the // maxlen-sized cycle Vertex j = null; while (((j = detail::extend_path(g, p, closed)) != null) && (p.size() < maxlen)) ; // empty loop // if we're done extending the path and there's an edge // connecting the back to the front, then we should have // a cycle. if (detail::can_wrap_path(g, p) && p.size() >= minlen) { vis.cycle(p, g); } if (!detail::exhaust_paths(g, p, closed)) { break; } } } // Select the minimum allowable length of a cycle based on the directedness // of the graph - 2 for directed, 3 for undirected. template < typename D > struct min_cycles { enum { value = 2 }; }; template <> struct min_cycles< undirected_tag > { enum { value = 3 }; }; } /* namespace detail */ template < typename Graph, typename Visitor > inline void tiernan_all_cycles( const Graph& g, Visitor vis, std::size_t minlen, std::size_t maxlen) { BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >)); typedef typename graph_traits< Graph >::vertex_iterator VertexIterator; VertexIterator i, end; for (boost::tie(i, end) = vertices(g); i != end; ++i) { detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen); } } template < typename Graph, typename Visitor > inline void tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen) { typedef typename graph_traits< Graph >::directed_category Dir; tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value, maxlen); } template < typename Graph, typename Visitor > inline void tiernan_all_cycles(const Graph& g, Visitor vis) { typedef typename graph_traits< Graph >::directed_category Dir; tiernan_all_cycles(g, vis, detail::min_cycles< Dir >::value, (std::numeric_limits< std::size_t >::max)()); } template < typename Graph > inline std::pair< std::size_t, std::size_t > tiernan_girth_and_circumference( const Graph& g) { std::size_t min_ = (std::numeric_limits< std::size_t >::max)(), max_ = 0; tiernan_all_cycles(g, find_min_max_cycle(min_, max_)); // if this is the case, the graph is acyclic... if (max_ == 0) max_ = min_; return std::make_pair(min_, max_); } template < typename Graph > inline std::size_t tiernan_girth(const Graph& g) { return tiernan_girth_and_circumference(g).first; } template < typename Graph > inline std::size_t tiernan_circumference(const Graph& g) { return tiernan_girth_and_circumference(g).second; } } /* namespace boost */ #endif