// Boost.Geometry // Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan. // Copyright (c) 2023 Adam Wulkiewicz, Lodz, Poland. // Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program. // This file was modified by Oracle on 2019. // Modifications copyright (c) 2019 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from GeographicLib, https://geographiclib.sourceforge.io // GeographicLib is originally written by Charles Karney. // Author: Charles Karney (2008-2017) // Last updated version of GeographicLib: 1.49 // Original copyright notice: // Copyright (c) Charles Karney (2008-2017) and licensed // under the MIT/X11 License. For more information, see // https://geographiclib.sourceforge.io #ifndef BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP #define BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP #include #include #include namespace boost { namespace geometry { namespace series_expansion { /* Generate and evaluate the series expansion of the following integral I1 = integrate( sqrt(1+k2*sin(sigma1)^2), sigma1, 0, sigma ) which is valid for k2 small. We substitute k2 = 4 * eps / (1 - eps)^2 and expand (1 - eps) * I1 retaining terms up to order eps^maxpow in A1 and C1[l]. The resulting series is of the form A1 * ( sigma + sum(C1[l] * sin(2*l*sigma), l, 1, maxpow) ). The scale factor A1-1 = mean value of (d/dsigma)I1 - 1 The expansion above is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_A1 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac To replace each number x by CT(x) the following script can be used: sed -e 's/[0-9]\+/CT(&)/g; s/\[CT/\[/g; s/)\]/\]/g; s/case\sCT(/case /g; s/):/:/g; s/epsCT(2)/eps2/g;' */ template inline CT evaluate_A1(CT const& eps) { CT const eps2 = math::sqr(eps); CT t; switch (SeriesOrder/2) { case 0: t = CT(0); break; case 1: t = eps2/CT(4); break; case 2: t = eps2*(eps2+CT(16))/CT(64); break; case 3: t = eps2*(eps2*(eps2+CT(4))+CT(64))/CT(256); break; default: t = eps2*(eps2*(eps2*(CT(25)*eps2+CT(64))+CT(256))+CT(4096))/CT(16384); break; } return (t + eps) / (CT(1) - eps); } /* Generate and evaluate the series expansion of the following integral I2 = integrate( 1/sqrt(1+k2*sin(sigma1)^2), sigma1, 0, sigma ) which is valid for k2 small. We substitute k2 = 4 * eps / (1 - eps)^2 and expand (1 - eps) * I2 retaining terms up to order eps^maxpow in A2 and C2[l]. The resulting series is of the form A2 * ( sigma + sum(C2[l] * sin(2*l*sigma), l, 1, maxpow) ) The scale factor A2-1 = mean value of (d/dsigma)2 - 1 The expansion above is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_A2 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline CT evaluate_A2(CT const& eps) { CT const eps2 = math::sqr(eps); CT t; switch (SeriesOrder/2) { case 0: t = CT(0); break; case 1: t = -CT(3)*eps2/CT(4); break; case 2: t = (-CT(7)*eps2-CT(48))*eps2/CT(64); break; case 3: t = eps2*((-CT(11)*eps2-CT(28))*eps2-CT(192))/CT(256); break; default: t = eps2*(eps2*((-CT(375)*eps2-CT(704))*eps2-CT(1792))-CT(12288))/CT(16384); break; } return (t - eps) / (CT(1) + eps); } /* Express I3 = integrate( (2-f)/(1+(1-f)*sqrt(1+k2*sin(sigma1)^2)), sigma1, 0, sigma ) as a series A3 * ( sigma + sum(C3[l] * sin(2*l*sigma), l, 1, maxpow-1) ) valid for f and k2 small. It is convenient to write k2 = 4 * eps / (1 - eps)^2 and f = 2*n/(1+n) and expand in eps and n. This procedure leads to a series where the coefficients of eps^j are terminating series in n. The scale factor A3 = mean value of (d/dsigma)I3 The expansion above is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_coeffs_A3 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline void evaluate_coeffs_A3(Coeffs &c, CT const& n) { switch (int(Coeffs::static_size)) { case 0: break; case 1: c[0] = CT(1); break; case 2: c[0] = CT(1); c[1] = -CT(1)/CT(2); break; case 3: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = -CT(1)/CT(4); break; case 4: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = (-n-CT(2))/CT(8); c[3] = -CT(1)/CT(16); break; case 5: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8); c[3] = (-CT(3)*n-CT(1))/CT(16); c[4] = -CT(3)/CT(64); break; case 6: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8); c[3] = ((-n-CT(3))*n-CT(1))/CT(16); c[4] = (-CT(2)*n-CT(3))/CT(64); c[5] = -CT(3)/CT(128); break; case 7: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8); c[3] = (n*(n*(CT(5)*n-CT(1))-CT(3))-CT(1))/CT(16); c[4] = ((-CT(10)*n-CT(2))*n-CT(3))/CT(64); c[5] = (-CT(5)*n-CT(3))/CT(128); c[6] = -CT(5)/CT(256); break; default: c[0] = CT(1); c[1] = (n-CT(1))/CT(2); c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8); c[3] = (n*(n*(CT(5)*n-CT(1))-CT(3))-CT(1))/CT(16); c[4] = (n*((-CT(5)*n-CT(20))*n-CT(4))-CT(6))/CT(128); c[5] = ((-CT(5)*n-CT(10))*n-CT(6))/CT(256); c[6] = (-CT(15)*n-CT(20))/CT(1024); c[7] = -CT(25)/CT(2048); break; } } /* The coefficients C1[l] in the Fourier expansion of B1. The expansion below is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_coeffs_C1 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline void evaluate_coeffs_C1(Coeffs &c, CT const& eps) { CT const eps2 = math::sqr(eps); CT d = eps; switch (int(Coeffs::static_size) - 1) { case 0: break; case 1: c[1] = -d/CT(2); break; case 2: c[1] = -d/CT(2); d *= eps; c[2] = -d/CT(16); break; case 3: c[1] = d*(CT(3)*eps2-CT(8))/CT(16); d *= eps; c[2] = -d/CT(16); d *= eps; c[3] = -d/CT(48); break; case 4: c[1] = d*(CT(3)*eps2-CT(8))/CT(16); d *= eps; c[2] = d*(eps2-CT(2))/CT(32); d *= eps; c[3] = -d/CT(48); d *= eps; c[4] = -CT(5)*d/CT(512); break; case 5: c[1] = d*((CT(6)-eps2)*eps2-CT(16))/CT(32); d *= eps; c[2] = d*(eps2-CT(2))/CT(32); d *= eps; c[3] = d*(CT(9)*eps2-CT(16))/CT(768); d *= eps; c[4] = -CT(5)*d/CT(512); d *= eps; c[5] = -CT(7)*d/CT(1280); break; case 6: c[1] = d*((CT(6)-eps2)*eps2-CT(16))/CT(32); d *= eps; c[2] = d*((CT(64)-CT(9)*eps2)*eps2-CT(128))/CT(2048); d *= eps; c[3] = d*(CT(9)*eps2-CT(16))/CT(768); d *= eps; c[4] = d*(CT(3)*eps2-CT(5))/CT(512); d *= eps; c[5] = -CT(7)*d/CT(1280); d *= eps; c[6] = -CT(7)*d/CT(2048); break; case 7: c[1] = d*(eps2*(eps2*(CT(19)*eps2-CT(64))+CT(384))-CT(1024))/CT(2048); d *= eps; c[2] = d*((CT(64)-CT(9)*eps2)*eps2-CT(128))/CT(2048); d *= eps; c[3] = d*((CT(72)-CT(9)*eps2)*eps2-CT(128))/CT(6144); d *= eps; c[4] = d*(CT(3)*eps2-CT(5))/CT(512); d *= eps; c[5] = d*(CT(35)*eps2-CT(56))/CT(10240); d *= eps; c[6] = -CT(7)*d/CT(2048); d *= eps; c[7] = -CT(33)*d/CT(14336); break; default: c[1] = d*(eps2*(eps2*(CT(19)*eps2-CT(64))+CT(384))-CT(1024))/CT(2048); d *= eps; c[2] = d*(eps2*(eps2*(CT(7)*eps2-CT(18))+CT(128))-CT(256))/CT(4096); d *= eps; c[3] = d*((CT(72)-CT(9)*eps2)*eps2-CT(128))/CT(6144); d *= eps; c[4] = d*((CT(96)-CT(11)*eps2)*eps2-CT(160))/CT(16384); d *= eps; c[5] = d*(CT(35)*eps2-CT(56))/CT(10240); d *= eps; c[6] = d*(CT(9)*eps2-CT(14))/CT(4096); d *= eps; c[7] = -CT(33)*d/CT(14336); d *= eps; c[8] = -CT(429)*d/CT(262144); break; } } /* The coefficients C1p[l] in the Fourier expansion of B1p. The expansion below is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_coeffs_C1p below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline void evaluate_coeffs_C1p(Coeffs& c, CT const& eps) { CT const eps2 = math::sqr(eps); CT d = eps; switch (int(Coeffs::static_size) - 1) { case 0: break; case 1: c[1] = d/CT(2); break; case 2: c[1] = d/CT(2); d *= eps; c[2] = CT(5)*d/CT(16); break; case 3: c[1] = d*(CT(16)-CT(9)*eps2)/CT(32); d *= eps; c[2] = CT(5)*d/CT(16); d *= eps; c[3] = CT(29)*d/CT(96); break; case 4: c[1] = d*(CT(16)-CT(9)*eps2)/CT(32); d *= eps; c[2] = d*(CT(30)-CT(37)*eps2)/CT(96); d *= eps; c[3] = CT(29)*d/CT(96); d *= eps; c[4] = CT(539)*d/CT(1536); break; case 5: c[1] = d*(eps2*(CT(205)*eps2-CT(432))+CT(768))/CT(1536); d *= eps; c[2] = d*(CT(30)-CT(37)*eps2)/CT(96); d *= eps; c[3] = d*(CT(116)-CT(225)*eps2)/CT(384); d *= eps; c[4] = CT(539)*d/CT(1536); d *= eps; c[5] = CT(3467)*d/CT(7680); break; case 6: c[1] = d*(eps2*(CT(205)*eps2-CT(432))+CT(768))/CT(1536); d *= eps; c[2] = d*(eps2*(CT(4005)*eps2-CT(4736))+CT(3840))/CT(12288); d *= eps; c[3] = d*(CT(116)-CT(225)*eps2)/CT(384); d *= eps; c[4] = d*(CT(2695)-CT(7173)*eps2)/CT(7680); d *= eps; c[5] = CT(3467)*d/CT(7680); d *= eps; c[6] = CT(38081)*d/CT(61440); break; case 7: c[1] = d*(eps2*((CT(9840)-CT(4879)*eps2)*eps2-CT(20736))+CT(36864))/CT(73728); d *= eps; c[2] = d*(eps2*(CT(4005)*eps2-CT(4736))+CT(3840))/CT(12288); d *= eps; c[3] = d*(eps2*(CT(8703)*eps2-CT(7200))+CT(3712))/CT(12288); d *= eps; c[4] = d*(CT(2695)-CT(7173)*eps2)/CT(7680); d *= eps; c[5] = d*(CT(41604)-CT(141115)*eps2)/CT(92160); d *= eps; c[6] = CT(38081)*d/CT(61440); d *= eps; c[7] = CT(459485)*d/CT(516096); break; default: c[1] = d*(eps2*((CT(9840)-CT(4879)*eps2)*eps2-CT(20736))+CT(36864))/CT(73728); d *= eps; c[2] = d*(eps2*((CT(120150)-CT(86171)*eps2)*eps2-CT(142080))+CT(115200))/CT(368640); d *= eps; c[3] = d*(eps2*(CT(8703)*eps2-CT(7200))+CT(3712))/CT(12288); d *= eps; c[4] = d*(eps2*(CT(1082857)*eps2-CT(688608))+CT(258720))/CT(737280); d *= eps; c[5] = d*(CT(41604)-CT(141115)*eps2)/CT(92160); d *= eps; c[6] = d*(CT(533134)-CT(2200311)*eps2)/CT(860160); d *= eps; c[7] = CT(459485)*d/CT(516096); d *= eps; c[8] = CT(109167851)*d/CT(82575360); break; } } /* The coefficients C2[l] in the Fourier expansion of B2. The expansion below is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_coeffs_C2 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline void evaluate_coeffs_C2(Coeffs& c, CT const& eps) { CT const eps2 = math::sqr(eps); CT d = eps; switch (int(Coeffs::static_size) - 1) { case 0: break; case 1: c[1] = d/CT(2); break; case 2: c[1] = d/CT(2); d *= eps; c[2] = CT(3)*d/CT(16); break; case 3: c[1] = d*(eps2+CT(8))/CT(16); d *= eps; c[2] = CT(3)*d/CT(16); d *= eps; c[3] = CT(5)*d/CT(48); break; case 4: c[1] = d*(eps2+CT(8))/CT(16); d *= eps; c[2] = d*(eps2+CT(6))/CT(32); d *= eps; c[3] = CT(5)*d/CT(48); d *= eps; c[4] = CT(35)*d/CT(512); break; case 5: c[1] = d*(eps2*(eps2+CT(2))+CT(16))/CT(32); d *= eps; c[2] = d*(eps2+CT(6))/CT(32); d *= eps; c[3] = d*(CT(15)*eps2+CT(80))/CT(768); d *= eps; c[4] = CT(35)*d/CT(512); d *= eps; c[5] = CT(63)*d/CT(1280); break; case 6: c[1] = d*(eps2*(eps2+CT(2))+CT(16))/CT(32); d *= eps; c[2] = d*(eps2*(CT(35)*eps2+CT(64))+CT(384))/CT(2048); d *= eps; c[3] = d*(CT(15)*eps2+CT(80))/CT(768); d *= eps; c[4] = d*(CT(7)*eps2+CT(35))/CT(512); d *= eps; c[5] = CT(63)*d/CT(1280); d *= eps; c[6] = CT(77)*d/CT(2048); break; case 7: c[1] = d*(eps2*(eps2*(CT(41)*eps2+CT(64))+CT(128))+CT(1024))/CT(2048); d *= eps; c[2] = d*(eps2*(CT(35)*eps2+CT(64))+CT(384))/CT(2048); d *= eps; c[3] = d*(eps2*(CT(69)*eps2+CT(120))+CT(640))/CT(6144); d *= eps; c[4] = d*(CT(7)*eps2+CT(35))/CT(512); d *= eps; c[5] = d*(CT(105)*eps2+CT(504))/CT(10240); d *= eps; c[6] = CT(77)*d/CT(2048); d *= eps; c[7] = CT(429)*d/CT(14336); break; default: c[1] = d*(eps2*(eps2*(CT(41)*eps2+CT(64))+CT(128))+CT(1024))/CT(2048); d *= eps; c[2] = d*(eps2*(eps2*(CT(47)*eps2+CT(70))+CT(128))+CT(768))/CT(4096); d *= eps; c[3] = d*(eps2*(CT(69)*eps2+CT(120))+CT(640))/CT(6144); d *= eps; c[4] = d*(eps2*(CT(133)*eps2+CT(224))+CT(1120))/CT(16384); d *= eps; c[5] = d*(CT(105)*eps2+CT(504))/CT(10240); d *= eps; c[6] = d*(CT(33)*eps2+CT(154))/CT(4096); d *= eps; c[7] = CT(429)*d/CT(14336); d *= eps; c[8] = CT(6435)*d/CT(262144); break; } } /* The coefficients C3[l] in the Fourier expansion of B3. The expansion below is performed in Maxima, a Computer Algebra System. The C++ code (that yields the function evaluate_coeffs_C3 below) is generated by the following Maxima script: geometry/doc/other/maxima/geod.mac */ template inline void evaluate_coeffs_C3x(Coeffs &c, CT const& n) { BOOST_GEOMETRY_ASSERT((Coeffs::static_size == (SeriesOrder * (SeriesOrder - 1)) / 2)); CT const n2 = math::sqr(n); switch (SeriesOrder) { case 0: break; case 1: break; case 2: c[0] = (CT(1)-n)/CT(4); break; case 3: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = ((n-CT(3))*n+CT(2))/CT(32); break; case 4: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64); c[3] = ((n-CT(3))*n+CT(2))/CT(32); c[4] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64); c[5] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192); break; case 5: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64); c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128); c[4] = ((n-CT(3))*n+CT(2))/CT(32); c[5] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64); c[6] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256); c[7] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192); c[8] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384); c[9] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024); break; case 6: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64); c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128); c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512); c[5] = ((n-CT(3))*n+CT(2))/CT(32); c[6] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64); c[7] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256); c[8] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256); c[9] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192); c[10] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384); c[11] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072); c[12] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024); c[13] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048); c[14] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120); break; case 7: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64); c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128); c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512); c[5] = (CT(10)*n+CT(21))/CT(1024); c[6] = ((n-CT(3))*n+CT(2))/CT(32); c[7] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64); c[8] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256); c[9] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256); c[10] = (CT(69)*n+CT(108))/CT(8192); c[11] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192); c[12] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384); c[13] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072); c[14] = (CT(12)-n)/CT(1024); c[15] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024); c[16] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048); c[17] = (CT(72)-CT(43)*n)/CT(8192); c[18] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120); c[19] = (CT(9)-CT(15)*n)/CT(1024); c[20] = (CT(44)-CT(99)*n)/CT(8192); break; default: c[0] = (CT(1)-n)/CT(4); c[1] = (CT(1)-n2)/CT(8); c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64); c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128); c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512); c[5] = (CT(10)*n+CT(21))/CT(1024); c[6] = CT(243)/CT(16384); c[7] = ((n-CT(3))*n+CT(2))/CT(32); c[8] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64); c[9] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256); c[10] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256); c[11] = (CT(69)*n+CT(108))/CT(8192); c[12] = CT(187)/CT(16384); c[13] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192); c[14] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384); c[15] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072); c[16] = (CT(12)-n)/CT(1024); c[17] = CT(139)/CT(16384); c[18] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024); c[19] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048); c[20] = (CT(72)-CT(43)*n)/CT(8192); c[21] = CT(127)/CT(16384); c[22] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120); c[23] = (CT(9)-CT(15)*n)/CT(1024); c[24] = CT(99)/CT(16384); c[25] = (CT(44)-CT(99)*n)/CT(8192); c[26] = CT(99)/CT(16384); c[27] = CT(429)/CT(114688); break; } } /* \brief Given the set of coefficients coeffs2[] evaluate on C3 and return the set of coefficients coeffs1[]. Elements coeffs1[1] through coeffs1[SeriesOrder - 1] are set. */ template inline void evaluate_coeffs_C3(Coeffs1 &coeffs1, Coeffs2 &coeffs2, CT const& eps) { CT mult = 1; size_t offset = 0; // i is the index of C3[i]. for (size_t i = 1; i < Coeffs1::static_size; ++i) { // Order of polynomial in eps. size_t m = Coeffs1::static_size - i; mult *= eps; coeffs1[i] = mult * math::horner_evaluate(eps, coeffs2.begin() + offset, coeffs2.begin() + offset + m); offset += m; } // Post condition: offset == coeffs_C3_size } /* \brief Evaluate the following: y = sum(c[i] * sin(2*i * x), i, 1, n) using Clenshaw summation. */ template inline CT sin_cos_series(CT const& sinx, CT const& cosx, Coeffs const& coeffs) { size_t n = Coeffs::static_size - 1; size_t index = 0; // Point to one beyond last element. index += (n + 1); CT ar = 2 * (cosx - sinx) * (cosx + sinx); // If n is odd, get the last element. CT k0 = n & 1 ? coeffs[--index] : 0; CT k1 = 0; // Make n even. n /= 2; while (n--) { // Unroll loop x 2, so accumulators return to their original role. k1 = ar * k0 - k1 + coeffs[--index]; k0 = ar * k1 - k0 + coeffs[--index]; } return 2 * sinx * cosx * k0; } /* The coefficient containers for the series expansions. These structs allow the caller to only know the series order. */ template struct coeffs_C1 : boost::array { coeffs_C1(CT const& epsilon) { evaluate_coeffs_C1(*this, epsilon); } }; template struct coeffs_C1p : boost::array { coeffs_C1p(CT const& epsilon) { evaluate_coeffs_C1p(*this, epsilon); } }; template struct coeffs_C2 : boost::array { coeffs_C2(CT const& epsilon) { evaluate_coeffs_C2(*this, epsilon); } }; template struct coeffs_C3x : boost::array { coeffs_C3x(CT const& n) { evaluate_coeffs_C3x(*this, n); } }; template struct coeffs_C3 : boost::array { coeffs_C3(CT const& n, CT const& epsilon) { coeffs_C3x coeffs_C3x(n); evaluate_coeffs_C3(*this, coeffs_C3x, epsilon); } }; template struct coeffs_A3 : boost::array { coeffs_A3(CT const& n) { evaluate_coeffs_A3(*this, n); } }; }}} // namespace boost::geometry::series_expansion #endif // BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP