// Boost.Geometry - gis-projections (based on PROJ4) // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017, 2018, 2019, 2022. // Modifications copyright (c) 2017-2022, Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from PROJ4, http://trac.osgeo.org/proj // PROJ4 is originally written by Gerald Evenden (then of the USGS) // PROJ4 is maintained by Frank Warmerdam // PROJ4 is converted to Boost.Geometry by Barend Gehrels // Last updated version of proj: 5.0.0 // Original copyright notice: // Copyright (c) 2003, 2006 Gerald I. Evenden // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. #ifndef BOOST_GEOMETRY_PROJECTIONS_OMERC_HPP #define BOOST_GEOMETRY_PROJECTIONS_OMERC_HPP #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace projections { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace omerc { template struct par_omerc { T A, B, E, AB, ArB, BrA, rB, singam, cosgam, sinrot, cosrot; T v_pole_n, v_pole_s, u_0; bool no_rot; }; static const double tolerance = 1.e-7; static const double epsilon = 1.e-10; template struct base_omerc_ellipsoid { par_omerc m_proj_parm; // FORWARD(e_forward) ellipsoid // Project coordinates from geographic (lon, lat) to cartesian (x, y) inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const { static const T half_pi = detail::half_pi(); T s, t, U, V, W, temp, u, v; if (fabs(fabs(lp_lat) - half_pi) > epsilon) { W = this->m_proj_parm.E / math::pow(pj_tsfn(lp_lat, sin(lp_lat), par.e), this->m_proj_parm.B); temp = 1. / W; s = .5 * (W - temp); t = .5 * (W + temp); V = sin(this->m_proj_parm.B * lp_lon); U = (s * this->m_proj_parm.singam - V * this->m_proj_parm.cosgam) / t; if (fabs(fabs(U) - 1.0) < epsilon) { BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } v = 0.5 * this->m_proj_parm.ArB * log((1. - U)/(1. + U)); temp = cos(this->m_proj_parm.B * lp_lon); if(fabs(temp) < tolerance) { u = this->m_proj_parm.A * lp_lon; } else { u = this->m_proj_parm.ArB * atan2((s * this->m_proj_parm.cosgam + V * this->m_proj_parm.singam), temp); } } else { v = lp_lat > 0 ? this->m_proj_parm.v_pole_n : this->m_proj_parm.v_pole_s; u = this->m_proj_parm.ArB * lp_lat; } if (this->m_proj_parm.no_rot) { xy_x = u; xy_y = v; } else { u -= this->m_proj_parm.u_0; xy_x = v * this->m_proj_parm.cosrot + u * this->m_proj_parm.sinrot; xy_y = u * this->m_proj_parm.cosrot - v * this->m_proj_parm.sinrot; } } // INVERSE(e_inverse) ellipsoid // Project coordinates from cartesian (x, y) to geographic (lon, lat) inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const { static const T half_pi = detail::half_pi(); T u, v, Qp, Sp, Tp, Vp, Up; if (this->m_proj_parm.no_rot) { v = xy_y; u = xy_x; } else { v = xy_x * this->m_proj_parm.cosrot - xy_y * this->m_proj_parm.sinrot; u = xy_y * this->m_proj_parm.cosrot + xy_x * this->m_proj_parm.sinrot + this->m_proj_parm.u_0; } Qp = exp(- this->m_proj_parm.BrA * v); Sp = .5 * (Qp - 1. / Qp); Tp = .5 * (Qp + 1. / Qp); Vp = sin(this->m_proj_parm.BrA * u); Up = (Vp * this->m_proj_parm.cosgam + Sp * this->m_proj_parm.singam) / Tp; if (fabs(fabs(Up) - 1.) < epsilon) { lp_lon = 0.; lp_lat = Up < 0. ? -half_pi : half_pi; } else { lp_lat = this->m_proj_parm.E / sqrt((1. + Up) / (1. - Up)); if ((lp_lat = pj_phi2(math::pow(lp_lat, T(1) / this->m_proj_parm.B), par.e)) == HUGE_VAL) { BOOST_THROW_EXCEPTION( projection_exception(error_tolerance_condition) ); } lp_lon = - this->m_proj_parm.rB * atan2((Sp * this->m_proj_parm.cosgam - Vp * this->m_proj_parm.singam), cos(this->m_proj_parm.BrA * u)); } } static inline std::string get_name() { return "omerc_ellipsoid"; } }; // Oblique Mercator template inline void setup_omerc(Params const& params, Parameters & par, par_omerc& proj_parm) { static const T fourth_pi = detail::fourth_pi(); static const T half_pi = detail::half_pi(); static const T pi = detail::pi(); static const T two_pi = detail::two_pi(); T con, com, cosph0, D, F, H, L, sinph0, p, J, gamma=0, gamma0, lamc=0, lam1=0, lam2=0, phi1=0, phi2=0, alpha_c=0; int alp, gam, no_off = 0; proj_parm.no_rot = pj_get_param_b(params, "no_rot", srs::dpar::no_rot); alp = pj_param_r(params, "alpha", srs::dpar::alpha, alpha_c); gam = pj_param_r(params, "gamma", srs::dpar::gamma, gamma); if (alp || gam) { lamc = pj_get_param_r(params, "lonc", srs::dpar::lonc); // NOTE: This is needed for Hotline Oblique Mercator variant A projection no_off = pj_get_param_b(params, "no_off", srs::dpar::no_off); } else { lam1 = pj_get_param_r(params, "lon_1", srs::dpar::lon_1); phi1 = pj_get_param_r(params, "lat_1", srs::dpar::lat_1); lam2 = pj_get_param_r(params, "lon_2", srs::dpar::lon_2); phi2 = pj_get_param_r(params, "lat_2", srs::dpar::lat_2); if (fabs(phi1 - phi2) <= tolerance || (con = fabs(phi1)) <= tolerance || fabs(con - half_pi) <= tolerance || fabs(fabs(par.phi0) - half_pi) <= tolerance || fabs(fabs(phi2) - half_pi) <= tolerance) BOOST_THROW_EXCEPTION( projection_exception(error_lat_0_or_alpha_eq_90) ); } com = sqrt(par.one_es); if (fabs(par.phi0) > epsilon) { sinph0 = sin(par.phi0); cosph0 = cos(par.phi0); con = 1. - par.es * sinph0 * sinph0; proj_parm.B = cosph0 * cosph0; proj_parm.B = sqrt(1. + par.es * proj_parm.B * proj_parm.B / par.one_es); proj_parm.A = proj_parm.B * par.k0 * com / con; D = proj_parm.B * com / (cosph0 * sqrt(con)); if ((F = D * D - 1.) <= 0.) F = 0.; else { F = sqrt(F); if (par.phi0 < 0.) F = -F; } proj_parm.E = F += D; proj_parm.E *= math::pow(pj_tsfn(par.phi0, sinph0, par.e), proj_parm.B); } else { proj_parm.B = 1. / com; proj_parm.A = par.k0; proj_parm.E = D = F = 1.; } if (alp || gam) { if (alp) { gamma0 = aasin(sin(alpha_c) / D); if (!gam) gamma = alpha_c; } else alpha_c = aasin(D*sin(gamma0 = gamma)); par.lam0 = lamc - aasin(.5 * (F - 1. / F) * tan(gamma0)) / proj_parm.B; } else { H = math::pow(pj_tsfn(phi1, sin(phi1), par.e), proj_parm.B); L = math::pow(pj_tsfn(phi2, sin(phi2), par.e), proj_parm.B); F = proj_parm.E / H; p = (L - H) / (L + H); J = proj_parm.E * proj_parm.E; J = (J - L * H) / (J + L * H); if ((con = lam1 - lam2) < -pi) lam2 -= two_pi; else if (con > pi) lam2 += two_pi; par.lam0 = adjlon(.5 * (lam1 + lam2) - atan( J * tan(.5 * proj_parm.B * (lam1 - lam2)) / p) / proj_parm.B); gamma0 = atan(2. * sin(proj_parm.B * adjlon(lam1 - par.lam0)) / (F - 1. / F)); gamma = alpha_c = aasin(D * sin(gamma0)); } proj_parm.singam = sin(gamma0); proj_parm.cosgam = cos(gamma0); proj_parm.sinrot = sin(gamma); proj_parm.cosrot = cos(gamma); proj_parm.BrA = 1. / (proj_parm.ArB = proj_parm.A * (proj_parm.rB = 1. / proj_parm.B)); proj_parm.AB = proj_parm.A * proj_parm.B; if (no_off) proj_parm.u_0 = 0; else { proj_parm.u_0 = fabs(proj_parm.ArB * atan(sqrt(D * D - 1.) / cos(alpha_c))); if (par.phi0 < 0.) proj_parm.u_0 = - proj_parm.u_0; } F = 0.5 * gamma0; proj_parm.v_pole_n = proj_parm.ArB * log(tan(fourth_pi - F)); proj_parm.v_pole_s = proj_parm.ArB * log(tan(fourth_pi + F)); } }} // namespace detail::omerc #endif // doxygen /*! \brief Oblique Mercator projection \ingroup projections \tparam Geographic latlong point type \tparam Cartesian xy point type \tparam Parameters parameter type \par Projection characteristics - Cylindrical - Spheroid - Ellipsoid \par Projection parameters - no_rot: No rotation - alpha: Alpha (degrees) - gamma: Gamma (degrees) - no_off: Do not offset origin to center of projection (useful for Hotline Oblique Mercator variant A). - lonc: Longitude (only used if alpha (or gamma) is specified) (degrees) - lon_1 (degrees) - lat_1: Latitude of first standard parallel (degrees) - lon_2 (degrees) - lat_2: Latitude of second standard parallel (degrees) - no_uoff: deprecated (string) \par Example \image html ex_omerc.gif */ template struct omerc_ellipsoid : public detail::omerc::base_omerc_ellipsoid { template inline omerc_ellipsoid(Params const& params, Parameters & par) { detail::omerc::setup_omerc(params, par, this->m_proj_parm); } }; #ifndef DOXYGEN_NO_DETAIL namespace detail { // Static projection BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_omerc, omerc_ellipsoid) // Factory entry(s) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(omerc_entry, omerc_ellipsoid) BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(omerc_init) { BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(omerc, omerc_entry) } } // namespace detail #endif // doxygen } // namespace projections }} // namespace boost::geometry #endif // BOOST_GEOMETRY_PROJECTIONS_OMERC_HPP