// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // Copyright (c) 2023-2024 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2018-2023. // Modifications copyright (c) 2018-2023 Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP #define BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP #include #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For backward compatibility #include #include #include #include #include #include #include #include #include #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER #include #endif namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace simplify { /*! \brief Small wrapper around a point, with an extra member "included" \details It has a const-reference to the original point (so no copy here) \tparam the enclosed point type */ template struct douglas_peucker_point { typedef Point point_type; Point const* p; bool included; inline douglas_peucker_point(Point const& ap) : p(boost::addressof(ap)) , included(false) {} }; /*! \brief Implements the simplify algorithm. \details The douglas_peucker policy simplifies a linestring, ring or vector of points using the well-known Douglas-Peucker algorithm. \note This strategy uses itself a point-segment potentially comparable distance strategy \author Barend and Maarten, 1995/1996 \author Barend, revised for Generic Geometry Library, 2008 */ /* For the algorithm, see for example: - http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm - http://www2.dcs.hull.ac.uk/CISRG/projects/Royal-Inst/demos/dp.html */ class douglas_peucker { template static inline void consider(Iterator begin, Iterator end, Distance const& max_dist, int& n, PSDistanceStrategy const& ps_distance_strategy) { typedef typename std::iterator_traits::value_type::point_type point_type; typedef decltype(ps_distance_strategy.apply(std::declval(), std::declval(), std::declval())) distance_type; std::size_t size = end - begin; // size must be at least 3 // because we want to consider a candidate point in between if (size <= 2) { #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER if (begin != end) { std::cout << "ignore between " << dsv(*(begin->p)) << " and " << dsv(*((end - 1)->p)) << " size=" << size << std::endl; } std::cout << "return because size=" << size << std::endl; #endif return; } Iterator last = end - 1; #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER std::cout << "find between " << dsv(*(begin->p)) << " and " << dsv(*(last->p)) << " size=" << size << std::endl; #endif // Find most far point, compare to the current segment //geometry::segment s(begin->p, last->p); distance_type md(-1.0); // any value < 0 Iterator candidate = end; for (Iterator it = begin + 1; it != last; ++it) { distance_type dist = ps_distance_strategy.apply(*(it->p), *(begin->p), *(last->p)); #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER std::cout << "consider " << dsv(*(it->p)) << " at " << double(dist) << ((dist > max_dist) ? " maybe" : " no") << std::endl; #endif if (md < dist) { md = dist; candidate = it; } } // If a point is found, set the include flag // and handle segments in between recursively if (max_dist < md && candidate != end) { #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER std::cout << "use " << dsv(candidate->p) << std::endl; #endif candidate->included = true; n++; consider(begin, candidate + 1, max_dist, n, ps_distance_strategy); consider(candidate, end, max_dist, n, ps_distance_strategy); } } template < typename Range, typename OutputIterator, typename Distance, typename PSDistanceStrategy > static inline OutputIterator apply_(Range const& range, OutputIterator out, Distance const& max_distance, PSDistanceStrategy const& ps_distance_strategy) { #ifdef BOOST_GEOMETRY_DEBUG_DOUGLAS_PEUCKER std::cout << "max distance: " << max_distance << std::endl << std::endl; #endif typedef typename boost::range_value::type point_type; typedef douglas_peucker_point dp_point_type; // Copy coordinates, a vector of references to all points std::vector ref_candidates(boost::begin(range), boost::end(range)); // Include first and last point of line, // they are always part of the line int n = 2; ref_candidates.front().included = true; ref_candidates.back().included = true; // Get points, recursively, including them if they are further away // than the specified distance consider(boost::begin(ref_candidates), boost::end(ref_candidates), max_distance, n, ps_distance_strategy); // Copy included elements to the output for (auto it = boost::begin(ref_candidates); it != boost::end(ref_candidates); ++it) { if (it->included) { // copy-coordinates does not work because OutputIterator // does not model Point (??) //geometry::convert(*(it->p), *out); *out = *(it->p); ++out; } } return out; } public: template static inline OutputIterator apply(Range const& range, OutputIterator out, Distance const& max_distance, Strategies const& strategies) { typedef typename boost::range_value::type point_type; typedef decltype(strategies.distance(detail::dummy_point(), detail::dummy_segment())) distance_strategy_type; typedef typename strategy::distance::services::comparable_type < distance_strategy_type >::type comparable_distance_strategy_type; comparable_distance_strategy_type cstrategy = strategy::distance::services::get_comparable < distance_strategy_type >::apply(strategies.distance(detail::dummy_point(), detail::dummy_segment())); return apply_(range, out, strategy::distance::services::result_from_distance < comparable_distance_strategy_type, point_type, point_type >::apply(cstrategy, max_distance), cstrategy); } }; template inline bool is_degenerate(Range const& range, Strategies const& strategies) { return boost::size(range) == 2 && detail::equals::equals_point_point(geometry::range::front(range), geometry::range::back(range), strategies); } struct simplify_range_insert { template < typename Range, typename OutputIterator, typename Distance, typename Impl, typename Strategies > static inline void apply(Range const& range, OutputIterator out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { if (is_degenerate(range, strategies)) { std::copy(boost::begin(range), boost::begin(range) + 1, out); } else if (boost::size(range) <= 2 || max_distance < 0) { std::copy(boost::begin(range), boost::end(range), out); } else { impl.apply(range, out, max_distance, strategies); } } }; struct simplify_copy_assign { template < typename In, typename Out, typename Distance, typename Impl, typename Strategies > static inline void apply(In const& in, Out& out, Distance const& , Impl const& , Strategies const& ) { out = in; } }; struct simplify_copy { template < typename RangeIn, typename RangeOut, typename Distance, typename Impl, typename Strategies > static inline void apply(RangeIn const& range, RangeOut& out, Distance const& , Impl const& , Strategies const& ) { std::copy(boost::begin(range), boost::end(range), geometry::range::back_inserter(out)); } }; template struct simplify_range { template < typename RangeIn, typename RangeOut, typename Distance, typename Impl, typename Strategies > static inline void apply(RangeIn const& range, RangeOut& out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { // For a RING: // Note that, especially if max_distance is too large, // the output ring might be self intersecting while the input ring is // not, although chances are low in normal polygons if (boost::size(range) <= MinimumToUseStrategy || max_distance < 0) { simplify_copy::apply(range, out, max_distance, impl, strategies); } else { simplify_range_insert::apply(range, geometry::range::back_inserter(out), max_distance, impl, strategies); } // Verify the two remaining points are equal. If so, remove one of them. // This can cause the output being under the minimum size if (is_degenerate(out, strategies)) { range::resize(out, 1); } } }; struct simplify_ring { private : template static inline int area_sign(Area const& area) { return area > 0 ? 1 : area < 0 ? -1 : 0; } template static std::size_t get_opposite(std::size_t index, Ring const& ring, Strategies const& strategies) { // TODO: Instead of calling the strategy call geometry::comparable_distance() ? auto const cdistance_strategy = strategies::distance::detail::make_comparable(strategies) .distance(detail::dummy_point(), detail::dummy_point()); using point_type = typename geometry::point_type::type; using cdistance_type = decltype(cdistance_strategy.apply( std::declval(), std::declval())); // Verify if it is NOT the case that all points are less than the // simplifying distance. If so, output is empty. cdistance_type max_cdistance(-1); point_type const& point = range::at(ring, index); std::size_t i = 0; for (auto it = boost::begin(ring); it != boost::end(ring); ++it, ++i) { cdistance_type const cdistance = cdistance_strategy.apply(*it, point); if (cdistance > max_cdistance) { max_cdistance = cdistance; index = i; } } return index; } public : template < typename RingIn, typename RingOut, typename Distance, typename Impl, typename Strategies > static inline void apply(RingIn const& ring, RingOut& out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { std::size_t const size = boost::size(ring); if (size == 0) { return; } constexpr bool is_closed_in = geometry::closure::value == closed; constexpr bool is_closed_out = geometry::closure::value == closed; constexpr bool is_clockwise_in = geometry::point_order::value == clockwise; constexpr bool is_clockwise_out = geometry::point_order::value == clockwise; // TODO: instead of area() use calculate_point_order() ? int const input_sign = area_sign(geometry::area(ring, strategies)); std::set visited_indexes; // Rotate it into a copied vector // (vector, because source type might not support rotation) // (duplicate end point will be simplified away) typedef typename geometry::point_type::type point_type; std::vector rotated; rotated.reserve(size + 1); // 1 because open rings are closed // Closing point (but it will not start here) std::size_t index = 0; // Iterate (usually one iteration is enough) for (std::size_t iteration = 0; iteration < 4u; iteration++) { // Always take the opposite. Opposite guarantees that no point // "halfway" is chosen, creating an artefact (very narrow triangle) // Iteration 0: opposite to closing point (1/2, = on convex hull) // (this will start simplification with that point // and its opposite ~0) // Iteration 1: move a quarter on that ring, then opposite to 1/4 // (with its opposite 3/4) // Iteration 2: move an eight on that ring, then opposite (1/8) // Iteration 3: again move a quarter, then opposite (7/8) // So finally 8 "sides" of the ring have been examined (if it were // a semi-circle). Most probably, there are only 0 or 1 iterations. switch (iteration) { case 1 : index = (index + size / 4) % size; break; case 2 : index = (index + size / 8) % size; break; case 3 : index = (index + size / 4) % size; break; } index = get_opposite(index, ring, strategies); if (visited_indexes.count(index) > 0) { // Avoid trying the same starting point more than once continue; } // Do not duplicate the closing point auto rot_end = boost::end(ring); std::size_t rot_index = index; if BOOST_GEOMETRY_CONSTEXPR (is_closed_in) { if (size > 1) { --rot_end; if (rot_index == size - 1) { rot_index = 0; } } } std::rotate_copy(boost::begin(ring), range::pos(ring, rot_index), rot_end, std::back_inserter(rotated)); // Close the rotated copy rotated.push_back(range::at(ring, rot_index)); simplify_range<0>::apply(rotated, out, max_distance, impl, strategies); // Open output if needed if BOOST_GEOMETRY_CONSTEXPR (! is_closed_out) { if (boost::size(out) > 1) { range::pop_back(out); } } // TODO: instead of area() use calculate_point_order() ? // Verify that what was positive, stays positive (or goes to 0) // and what was negative stays negative (or goes to 0) int const output_sign = area_sign(geometry::area(out, strategies)); if (output_sign == input_sign) { // Result is considered as satisfactory (usually this is the // first iteration - only for small rings, having a scale // similar to simplify_distance, next iterations are tried return; } // Original is simplified away. Possibly there is a solution // when another starting point is used geometry::clear(out); if (iteration == 0 && geometry::perimeter(ring, strategies) < 3 * max_distance) { // Check if it is useful to iterate. A minimal triangle has a // perimeter of a bit more than 3 times the simplify distance return; } // Prepare next try visited_indexes.insert(index); rotated.clear(); } if BOOST_GEOMETRY_CONSTEXPR (is_clockwise_in != is_clockwise_out) { std::reverse(boost::begin(out), boost::end(out)); } } }; struct simplify_polygon { private: template < typename IteratorIn, typename InteriorRingsOut, typename Distance, typename Impl, typename Strategies > static inline void iterate(IteratorIn begin, IteratorIn end, InteriorRingsOut& interior_rings_out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { typedef typename boost::range_value::type single_type; for (IteratorIn it = begin; it != end; ++it) { single_type out; simplify_ring::apply(*it, out, max_distance, impl, strategies); if (! geometry::is_empty(out)) { range::push_back(interior_rings_out, std::move(out)); } } } template < typename InteriorRingsIn, typename InteriorRingsOut, typename Distance, typename Impl, typename Strategies > static inline void apply_interior_rings(InteriorRingsIn const& interior_rings_in, InteriorRingsOut& interior_rings_out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { range::clear(interior_rings_out); iterate(boost::begin(interior_rings_in), boost::end(interior_rings_in), interior_rings_out, max_distance, impl, strategies); } public: template < typename PolygonIn, typename PolygonOut, typename Distance, typename Impl, typename Strategies > static inline void apply(PolygonIn const& poly_in, PolygonOut& poly_out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { // Note that if there are inner rings, and distance is too large, // they might intersect with the outer ring in the output, // while it didn't in the input. simplify_ring::apply(exterior_ring(poly_in), exterior_ring(poly_out), max_distance, impl, strategies); apply_interior_rings(interior_rings(poly_in), interior_rings(poly_out), max_distance, impl, strategies); } }; template struct simplify_multi { template < typename MultiGeometryIn, typename MultiGeometryOut, typename Distance, typename Impl, typename Strategies > static inline void apply(MultiGeometryIn const& multi, MultiGeometryOut& out, Distance const& max_distance, Impl const& impl, Strategies const& strategies) { range::clear(out); using single_type = typename boost::range_value::type; for (auto it = boost::begin(multi); it != boost::end(multi); ++it) { single_type single_out; Policy::apply(*it, single_out, max_distance, impl, strategies); if (! geometry::is_empty(single_out)) { range::push_back(out, std::move(single_out)); } } } }; template struct has_same_tag_as { template struct pred : std::is_same < typename geometry::tag::type, typename geometry::tag::type > {}; }; template struct static_geometry_type { using type = typename util::sequence_find_if < typename traits::geometry_types::type, detail::simplify::has_same_tag_as::template pred >::type; BOOST_GEOMETRY_STATIC_ASSERT( (! std::is_void::value), "Unable to find corresponding geometry in GeometryOut", StaticGeometryIn, DynamicGeometryOut); }; }} // namespace detail::simplify #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename GeometryIn, typename GeometryOut, typename TagIn = typename tag::type, typename TagOut = typename tag::type > struct simplify: not_implemented {}; template struct simplify { template static inline void apply(PointIn const& point, PointOut& out, Distance const& , Impl const& , Strategy const& ) { geometry::convert(point, out); } }; template struct simplify : detail::simplify::simplify_copy_assign {}; template struct simplify : detail::simplify::simplify_copy_assign {}; // Linestring, keep 2 points (unless those points are the same) template struct simplify : detail::simplify::simplify_range<2> {}; template struct simplify : detail::simplify::simplify_ring {}; template struct simplify : detail::simplify::simplify_polygon {}; template struct simplify : detail::simplify::simplify_copy {}; template struct simplify : detail::simplify::simplify_multi > {}; template struct simplify : detail::simplify::simplify_multi {}; template < typename Geometry, typename Tag = typename tag::type > struct simplify_insert: not_implemented {}; template struct simplify_insert : detail::simplify::simplify_range_insert {}; template struct simplify_insert : detail::simplify::simplify_range_insert {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_strategy { template < typename Strategies, bool IsUmbrella = strategies::detail::is_umbrella_strategy::value > struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, Strategies const& strategies) { dispatch::simplify < GeometryIn, GeometryOut >::apply(geometry, out, max_distance, detail::simplify::douglas_peucker(), strategies); } }; template struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, Strategy const& strategy) { using strategies::simplify::services::strategy_converter; simplify < decltype(strategy_converter::get(strategy)) >::apply(geometry, out, max_distance, strategy_converter::get(strategy)); } }; template <> struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, default_strategy) { // NOTE: Alternatively take two geometry types in default_strategy using cs_tag1_t = typename geometry::cs_tag::type; using cs_tag2_t = typename geometry::cs_tag::type; BOOST_GEOMETRY_STATIC_ASSERT( (std::is_same::value), "Incompatible coordinate systems", cs_tag1_t, cs_tag2_t); typedef typename strategies::simplify::services::default_strategy < GeometryIn >::type strategy_type; simplify < strategy_type >::apply(geometry, out, max_distance, strategy_type()); } }; template < typename Strategies, bool IsUmbrella = strategies::detail::is_umbrella_strategy::value > struct simplify_insert { template static inline void apply(Geometry const& geometry, OutputIterator& out, Distance const& max_distance, Strategies const& strategies) { dispatch::simplify_insert < Geometry >::apply(geometry, out, max_distance, detail::simplify::douglas_peucker(), strategies); } }; template struct simplify_insert { template static inline void apply(Geometry const& geometry, OutputIterator& out, Distance const& max_distance, Strategy const& strategy) { using strategies::simplify::services::strategy_converter; simplify_insert < decltype(strategy_converter::get(strategy)) >::apply(geometry, out, max_distance, strategy_converter::get(strategy)); } }; template <> struct simplify_insert { template static inline void apply(Geometry const& geometry, OutputIterator& out, Distance const& max_distance, default_strategy) { typedef typename strategies::simplify::services::default_strategy < Geometry >::type strategy_type; simplify_insert < strategy_type >::apply(geometry, out, max_distance, strategy_type()); } }; } // namespace resolve_strategy namespace resolve_dynamic { template < typename GeometryIn, typename GeometryOut, typename TagIn = typename tag::type, typename TagOut = typename tag::type > struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, Strategy const& strategy) { resolve_strategy::simplify::apply(geometry, out, max_distance, strategy); } }; template struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, Strategy const& strategy) { traits::visit::apply([&](auto const& g) { using geom_t = util::remove_cref_t; using detail::simplify::static_geometry_type; using geom_out_t = typename static_geometry_type::type; geom_out_t o; simplify::apply(g, o, max_distance, strategy); out = std::move(o); }, geometry); } }; template struct simplify { template static inline void apply(GeometryIn const& geometry, GeometryOut& out, Distance const& max_distance, Strategy const& strategy) { detail::visit_breadth_first([&](auto const& g) { using geom_t = util::remove_cref_t; using detail::simplify::static_geometry_type; using geom_out_t = typename static_geometry_type::type; geom_out_t o; simplify::apply(g, o, max_distance, strategy); traits::emplace_back::apply(out, std::move(o)); return true; }, geometry); } }; } // namespace resolve_dynamic /*! \brief Simplify a geometry using a specified strategy \ingroup simplify \tparam Geometry \tparam_geometry \tparam GeometryOut The output geometry \tparam Distance A numerical distance measure \tparam Strategy A type fulfilling a SimplifyStrategy concept \param strategy A strategy to calculate simplification \param geometry input geometry, to be simplified \param out output geometry, simplified version of the input geometry \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \param strategy simplify strategy to be used for simplification \note The simplification is done with Douglas-Peucker algorithm \image html svg_simplify_country.png "The image below presents the simplified country" \qbk{distinguish,with strategy} */ template inline void simplify(Geometry const& geometry, GeometryOut& out, Distance const& max_distance, Strategy const& strategy) { concepts::check(); concepts::check(); geometry::clear(out); resolve_dynamic::simplify::apply(geometry, out, max_distance, strategy); } /*! \brief Simplify a geometry \ingroup simplify \tparam Geometry \tparam_geometry \tparam GeometryOut The output geometry \tparam Distance \tparam_numeric \param geometry input geometry, to be simplified \param out output geometry, simplified version of the input geometry \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \note The simplification is done with Douglas-Peucker algorithm \qbk{[include reference/algorithms/simplify.qbk]} */ template inline void simplify(Geometry const& geometry, GeometryOut& out, Distance const& max_distance) { concepts::check(); concepts::check(); geometry::simplify(geometry, out, max_distance, default_strategy()); } #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace simplify { /*! \brief Simplify a geometry, using an output iterator and a specified strategy \ingroup simplify \tparam Geometry \tparam_geometry \param geometry input geometry, to be simplified \param out output iterator, outputs all simplified points \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \param strategy simplify strategy to be used for simplification \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/simplify.qbk]} */ template inline void simplify_insert(Geometry const& geometry, OutputIterator out, Distance const& max_distance, Strategy const& strategy) { concepts::check(); resolve_strategy::simplify_insert::apply(geometry, out, max_distance, strategy); } /*! \brief Simplify a geometry, using an output iterator \ingroup simplify \tparam Geometry \tparam_geometry \param geometry input geometry, to be simplified \param out output iterator, outputs all simplified points \param max_distance distance (in units of input coordinates) of a vertex to other segments to be removed \qbk{[include reference/algorithms/simplify_insert.qbk]} */ template inline void simplify_insert(Geometry const& geometry, OutputIterator out, Distance const& max_distance) { // Concept: output point type = point type of input geometry concepts::check(); concepts::check::type>(); simplify_insert(geometry, out, max_distance, default_strategy()); } }} // namespace detail::simplify #endif // DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_SIMPLIFY_HPP