// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // Copyright (c) 2014 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2014-2023. // Modifications copyright (c) 2014-2023, Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP #define BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace for_each { struct fe_point_point { template static inline bool apply(Point& point, Functor&& f) { return f(point); } }; struct fe_segment_point { template static inline bool apply(Point& , Functor&& ) { // TODO: if non-const, we should extract the points from the segment // and call the functor on those two points //model::referring_segment s(point, point); //return f(s); return true; } }; struct fe_point_segment { template static inline bool apply(Segment& s, Functor&& f) { // Or should we guarantee that the type of points is // point_type::type ? geometry::detail::indexed_point_view p0(s); geometry::detail::indexed_point_view p1(s); return f(p0) && f(p1); } }; struct fe_segment_segment { template static inline bool apply(Segment& s, Functor&& f) { // Or should we guarantee that the type of segment is // referring_segment<...> ? return f(s); } }; template struct fe_range_value { typedef util::transcribe_const_t < Range, typename boost::range_value::type > type; }; template struct fe_point_type { typedef util::transcribe_const_t < Range, typename point_type::type > type; }; template struct fe_point_type_is_referencable { static const bool value = std::is_const::value || std::is_same < typename boost::range_reference::type, typename fe_point_type::type& >::value; }; template < typename Range, bool UseReferences = fe_point_type_is_referencable::value > struct fe_point_call_f { template static inline bool apply(Iterator it, Functor&& f) { // Implementation for real references (both const and mutable) // and const proxy references. typedef typename fe_point_type::type point_type; point_type& p = *it; return f(p); } }; template struct fe_point_call_f { template static inline bool apply(Iterator it, Functor&& f) { // Implementation for proxy mutable references. // Temporary point has to be created and assigned afterwards. typedef typename fe_point_type::type point_type; point_type p = *it; bool result = f(p); *it = p; return result; } }; struct fe_point_range { template static inline bool apply(Range& range, Functor&& f) { auto const end = boost::end(range); for (auto it = boost::begin(range); it != end; ++it) { if (! fe_point_call_f::apply(it, f)) { return false; } } return true; } }; template < typename Range, bool UseReferences = fe_point_type_is_referencable::value > struct fe_segment_call_f { template static inline bool apply(Iterator it0, Iterator it1, Functor&& f) { // Implementation for real references (both const and mutable) // and const proxy references. // If const proxy references are returned by iterators // then const real references here prevents temporary // objects from being destroyed. typedef typename fe_point_type::type point_type; point_type& p0 = *it0; point_type& p1 = *it1; model::referring_segment s(p0, p1); return f(s); } }; template struct fe_segment_call_f { template static inline bool apply(Iterator it0, Iterator it1, Functor&& f) { // Mutable proxy references returned by iterators. // Temporary points have to be created and assigned afterwards. typedef typename fe_point_type::type point_type; point_type p0 = *it0; point_type p1 = *it1; model::referring_segment s(p0, p1); bool result = f(s); *it0 = p0; *it1 = p1; return result; } }; template struct fe_segment_range_with_closure { template static inline bool apply(Range& range, Functor&& f) { auto it = boost::begin(range); auto const end = boost::end(range); if (it == end) { return true; } auto previous = it++; if (it == end) { return fe_segment_call_f::apply(previous, previous, f); } while (it != end) { if (! fe_segment_call_f::apply(previous, it, f)) { return false; } previous = it++; } return true; } }; template <> struct fe_segment_range_with_closure { template static inline bool apply(Range& range, Functor&& f) { if (! fe_segment_range_with_closure::apply(range, f)) { return false; } auto const begin = boost::begin(range); auto end = boost::end(range); if (begin == end) { return true; } --end; if (begin == end) { // single point ranges already handled in closed case above return true; } return fe_segment_call_f::apply(end, begin, f); } }; struct fe_segment_range { template static inline bool apply(Range& range, Functor&& f) { return fe_segment_range_with_closure < closure::value >::apply(range, f); } }; template struct for_each_polygon { template static inline bool apply(Polygon& poly, Functor&& f) { if (! RangePolicy::apply(exterior_ring(poly), f)) { return false; } auto&& rings = interior_rings(poly); auto const end = boost::end(rings); for (auto it = boost::begin(rings); it != end; ++it) { // NOTE: Currently lvalue iterator required if (! RangePolicy::apply(*it, f)) { return false; } } return true; } }; // Implementation of multi, for both point and segment, // just calling the single version. template struct for_each_multi { template static inline bool apply(MultiGeometry& multi, Functor&& f) { auto const end = boost::end(multi); for (auto it = boost::begin(multi); it != end; ++it) { // NOTE: Currently lvalue iterator required if (! SinglePolicy::apply(*it, f)) { return false; } } return true; } }; }} // namespace detail::for_each #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry, typename Tag = typename tag_cast::type, multi_tag>::type > struct for_each_point: not_implemented {}; template struct for_each_point : detail::for_each::fe_point_point {}; template struct for_each_point : detail::for_each::fe_point_segment {}; template struct for_each_point : detail::for_each::fe_point_range {}; template struct for_each_point : detail::for_each::fe_point_range {}; template struct for_each_point : detail::for_each::for_each_polygon < detail::for_each::fe_point_range > {}; template struct for_each_point : detail::for_each::for_each_multi < // Specify the dispatch of the single-version as policy for_each_point < typename detail::for_each::fe_range_value < MultiGeometry >::type > > {}; template < typename Geometry, typename Tag = typename tag::type > struct for_each_segment: not_implemented {}; template struct for_each_segment : detail::for_each::fe_segment_point // empty {}; template struct for_each_segment : detail::for_each::fe_segment_segment {}; template struct for_each_segment : detail::for_each::fe_segment_range {}; template struct for_each_segment : detail::for_each::fe_segment_range {}; template struct for_each_segment : detail::for_each::for_each_polygon < detail::for_each::fe_segment_range > {}; template struct for_each_segment : detail::for_each::fe_segment_point // empty {}; template struct for_each_segment : detail::for_each::for_each_multi < detail::for_each::fe_segment_range > {}; template struct for_each_segment : detail::for_each::for_each_multi < detail::for_each::for_each_polygon < detail::for_each::fe_segment_range > > {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH template inline bool all_points_of(Geometry& geometry, UnaryPredicate p) { concepts::check(); return dispatch::for_each_point::apply(geometry, p); } template inline bool all_segments_of(Geometry const& geometry, UnaryPredicate p) { concepts::check(); return dispatch::for_each_segment::apply(geometry, p); } template inline bool any_point_of(Geometry& geometry, UnaryPredicate p) { concepts::check(); return ! dispatch::for_each_point::apply(geometry, [&](auto&& pt) { return ! p(pt); }); } template inline bool any_segment_of(Geometry const& geometry, UnaryPredicate p) { concepts::check(); return ! dispatch::for_each_segment::apply(geometry, [&](auto&& s) { return ! p(s); }); } template inline bool none_point_of(Geometry& geometry, UnaryPredicate p) { concepts::check(); return dispatch::for_each_point::apply(geometry, [&](auto&& pt) { return ! p(pt); }); } template inline bool none_segment_of(Geometry const& geometry, UnaryPredicate p) { concepts::check(); return dispatch::for_each_segment::apply(geometry, [&](auto&& s) { return ! p(s); }); } /*! \brief \brf_for_each{point} \details \det_for_each{point} \ingroup for_each \param geometry \param_geometry \param f \par_for_each_f{point} \tparam Geometry \tparam_geometry \tparam Functor \tparam_functor \qbk{[include reference/algorithms/for_each_point.qbk]} \qbk{[heading Example]} \qbk{[for_each_point] [for_each_point_output]} \qbk{[for_each_point_const] [for_each_point_const_output]} */ template inline Functor for_each_point(Geometry& geometry, Functor f) { concepts::check(); dispatch::for_each_point::apply(geometry, [&](auto&& pt) { f(pt); // TODO: Implement separate function? return true; }); return f; } /*! \brief \brf_for_each{segment} \details \det_for_each{segment} \ingroup for_each \param geometry \param_geometry \param f \par_for_each_f{segment} \tparam Geometry \tparam_geometry \tparam Functor \tparam_functor \qbk{[include reference/algorithms/for_each_segment.qbk]} \qbk{[heading Example]} \qbk{[for_each_segment_const] [for_each_segment_const_output]} */ template inline Functor for_each_segment(Geometry& geometry, Functor f) { concepts::check(); dispatch::for_each_segment::apply(geometry, [&](auto&& s) { f(s); // TODO: Implement separate function? return true; }); return f; } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_FOR_EACH_HPP