// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2023-2024 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2017-2020. // Modifications copyright (c) 2017-2020 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP #include #include #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_GEOMETRY_DEBUG_INTERSECTION) \ || defined(BOOST_GEOMETRY_OVERLAY_REPORT_WKT) \ || defined(BOOST_GEOMETRY_DEBUG_TRAVERSE) # include # include # include #endif namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace overlay { template #ifdef BOOST_GEOMETRY_DEBUG_TRAVERSE inline void debug_traverse(Turn const& turn, Operation op, std::string const& header, bool condition = true) { if (! condition) { return; } std::cout << " " << header << " at " << op.seg_id << " meth: " << method_char(turn.method) << " op: " << operation_char(op.operation) << " vis: " << visited_char(op.visited) << " of: " << operation_char(turn.operations[0].operation) << operation_char(turn.operations[1].operation) << " " << geometry::wkt(turn.point) << std::endl; if (boost::contains(header, "Finished")) { std::cout << std::endl; } } #else inline void debug_traverse(Turn const& , Operation, const char*, bool = true) { } #endif template < bool Reverse1, bool Reverse2, overlay_type OverlayType, typename Geometry1, typename Geometry2, typename Turns, typename Clusters, typename RobustPolicy, typename Strategy, typename Visitor > struct traversal { private : static const operation_type target_operation = operation_from_overlay::value; typedef typename sort_by_side::side_compare::type side_compare_type; typedef typename boost::range_value::type turn_type; typedef typename turn_type::turn_operation_type turn_operation_type; typedef typename geometry::point_type::type point_type; typedef sort_by_side::side_sorter < Reverse1, Reverse2, OverlayType, point_type, Strategy, side_compare_type > sbs_type; public : inline traversal(Geometry1 const& geometry1, Geometry2 const& geometry2, Turns& turns, Clusters const& clusters, RobustPolicy const& robust_policy, Strategy const& strategy, Visitor& visitor) : m_geometry1(geometry1) , m_geometry2(geometry2) , m_turns(turns) , m_clusters(clusters) , m_robust_policy(robust_policy) , m_strategy(strategy) , m_visitor(visitor) { } template inline void finalize_visit_info(TurnInfoMap& turn_info_map) { for (auto& turn : m_turns) { for (int i = 0; i < 2; i++) { turn_operation_type& op = turn.operations[i]; if (op.visited.visited() || op.visited.started() || op.visited.finished() ) { ring_identifier const ring_id = ring_id_by_seg_id(op.seg_id); turn_info_map[ring_id].has_traversed_turn = true; if (op.operation == operation_continue) { // Continue operations should mark the other operation // as traversed too turn_operation_type& other_op = turn.operations[1 - i]; ring_identifier const other_ring_id = ring_id_by_seg_id(other_op.seg_id); turn_info_map[other_ring_id].has_traversed_turn = true; } } op.visited.finalize(); } } } //! Sets visited for ALL turns traveling to the same turn inline void set_visited_in_cluster(signed_size_type cluster_id, signed_size_type rank) { auto mit = m_clusters.find(cluster_id); BOOST_ASSERT(mit != m_clusters.end()); cluster_info const& cinfo = mit->second; for (auto turn_index : cinfo.turn_indices) { turn_type& turn = m_turns[turn_index]; for (auto& op : turn.operations) { if (op.visited.none() && op.enriched.rank == rank) { op.visited.set_visited(); } } } } inline void set_visited(turn_type& turn, turn_operation_type& op) { if (op.operation == detail::overlay::operation_continue) { // On "continue", all go in same direction so set "visited" for ALL for (int i = 0; i < 2; i++) { turn_operation_type& turn_op = turn.operations[i]; if (turn_op.visited.none()) { turn_op.visited.set_visited(); } } } else { op.visited.set_visited(); } if (turn.is_clustered()) { set_visited_in_cluster(turn.cluster_id, op.enriched.rank); } } inline bool is_visited(turn_type const& , turn_operation_type const& op, signed_size_type , int) const { return op.visited.visited(); } template inline bool select_source_generic(turn_type const& turn, segment_identifier const& current, segment_identifier const& previous) const { turn_operation_type const& op0 = turn.operations[0]; turn_operation_type const& op1 = turn.operations[1]; bool const switch_source = op0.enriched.region_id != -1 && op0.enriched.region_id == op1.enriched.region_id; #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSAL_SWITCH_DETECTOR) if (switch_source) { std::cout << "Switch source at " << &turn << std::endl; } else { std::cout << "DON'T SWITCH SOURCES at " << &turn << std::endl; } #endif return switch_source ? current.*Member != previous.*Member : current.*Member == previous.*Member; } inline bool select_source(turn_type const& turn, segment_identifier const& candidate_seg_id, segment_identifier const& previous_seg_id) const { // For uu/ii, only switch sources if indicated if BOOST_GEOMETRY_CONSTEXPR (OverlayType == overlay_buffer) { // Buffer does not use source_index (always 0). return select_source_generic<&segment_identifier::multi_index>( turn, candidate_seg_id, previous_seg_id); } else // else prevents unreachable code warning { if (is_self_turn(turn)) { // Also, if it is a self-turn, stay on same ring (multi/ring) return select_source_generic<&segment_identifier::multi_index>( turn, candidate_seg_id, previous_seg_id); } // Use source_index return select_source_generic<&segment_identifier::source_index>( turn, candidate_seg_id, previous_seg_id); } } inline bool traverse_possible(signed_size_type turn_index) const { if (turn_index == -1) { return false; } turn_type const& turn = m_turns[turn_index]; // It is not a dead end if there is an operation to continue, or of // there is a cluster (assuming for now we can get out of the cluster) return turn.is_clustered() || turn.has(target_operation) || turn.has(operation_continue); } inline std::size_t get_shortcut_level(turn_operation_type const& op, signed_size_type start_turn_index, signed_size_type origin_turn_index, std::size_t level = 1) const { signed_size_type next_turn_index = op.enriched.get_next_turn_index(); if (next_turn_index == -1) { return 0; } if (next_turn_index == start_turn_index) { // This operation finishes the ring return 0; } if (next_turn_index == origin_turn_index) { // This operation travels to itself return level; } if (level > 10) { // Avoid infinite recursion return 0; } turn_type const& next_turn = m_turns[next_turn_index]; for (int i = 0; i < 2; i++) { turn_operation_type const& next_op = next_turn.operations[i]; if (next_op.operation == target_operation && ! next_op.visited.finished() && ! next_op.visited.visited()) { // Recursively continue verifying if (get_shortcut_level(next_op, start_turn_index, origin_turn_index, level + 1)) { return level + 1; } } } return 0; } inline bool select_cc_operation(turn_type const& turn, signed_size_type start_turn_index, int& selected_op_index) const { // For "cc", take either one, but if there is a starting one, // take that one. If next is dead end, skip that one. // If both are valid candidates, take the one with minimal remaining // distance (important for #mysql_23023665 in buffer). signed_size_type next[2] = {0}; bool possible[2] = {0}; bool close[2] = {0}; for (int i = 0; i < 2; i++) { next[i] = turn.operations[i].enriched.get_next_turn_index(); possible[i] = traverse_possible(next[i]); close[i] = possible[i] && next[i] == start_turn_index; } if (close[0] != close[1]) { // One of the operations will finish the ring. Take that one. selected_op_index = close[0] ? 0 : 1; debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc closing"); return true; } if BOOST_GEOMETRY_CONSTEXPR (OverlayType == overlay_buffer) { if (possible[0] && possible[1]) { // Buffers sometimes have multiple overlapping pieces, where remaining // distance could lead to the wrong choice. Take the matching operation. bool is_target[2] = {0}; for (int i = 0; i < 2; i++) { turn_operation_type const& next_op = m_turns[next[i]].operations[i]; is_target[i] = next_op.operation == target_operation; } if (is_target[0] != is_target[1]) { // Take the matching operation selected_op_index = is_target[0] ? 0 : 1; debug_traverse(turn, turn.operations[selected_op_index], "Candidate cc target"); return true; } } } static bool const is_union = target_operation == operation_union; typename turn_operation_type::comparable_distance_type best_remaining_distance = 0; bool result = false; for (int i = 0; i < 2; i++) { if (!possible[i]) { continue; } turn_operation_type const& op = turn.operations[i]; if (! result || (is_union && op.remaining_distance > best_remaining_distance) || (!is_union && op.remaining_distance < best_remaining_distance)) { debug_traverse(turn, op, "First candidate cc", ! result); debug_traverse(turn, op, "Candidate cc override (remaining)", result && op.remaining_distance < best_remaining_distance); selected_op_index = i; best_remaining_distance = op.remaining_distance; result = true; } } return result; } inline bool select_noncc_operation(turn_type const& turn, segment_identifier const& previous_seg_id, int& selected_op_index) const { bool result = false; for (int i = 0; i < 2; i++) { turn_operation_type const& op = turn.operations[i]; if (op.operation == target_operation && ! op.visited.finished() && ! op.visited.visited() && (! result || select_source(turn, op.seg_id, previous_seg_id))) { selected_op_index = i; debug_traverse(turn, op, "Candidate"); result = true; } } return result; } inline bool select_preferred_operation(turn_type const& turn, signed_size_type turn_index, signed_size_type start_turn_index, int& selected_op_index) const { bool option[2] = {0}; bool finishing[2] = {0}; bool preferred[2] = {0}; std::size_t shortcut_level[2] = {0}; for (int i = 0; i < 2; i++) { turn_operation_type const& op = turn.operations[i]; if (op.operation == target_operation && ! op.visited.finished() && ! op.visited.visited()) { option[i] = true; if (op.enriched.get_next_turn_index() == start_turn_index) { finishing[i] = true; } else { shortcut_level[i] = get_shortcut_level(op, start_turn_index, turn_index); } if (op.enriched.prefer_start) { preferred[i] = true; } } } if (option[0] != option[1]) { // Only one operation is acceptable, take that one selected_op_index = option[0] ? 0 : 1; return true; } if (option[0] && option[1]) { // Both operations are acceptable if (finishing[0] != finishing[1]) { // Prefer operation finishing the ring selected_op_index = finishing[0] ? 0 : 1; return true; } if (shortcut_level[0] != shortcut_level[1]) { // If a turn can travel to itself again (without closing the // ring), take the shortest one selected_op_index = shortcut_level[0] < shortcut_level[1] ? 0 : 1; return true; } if (preferred[0] != preferred[1]) { // Only one operation is preferred (== was not intersection) selected_op_index = preferred[0] ? 0 : 1; return true; } } for (int i = 0; i < 2; i++) { if (option[i]) { selected_op_index = 0; return true; } } return false; } inline bool select_operation(turn_type const& turn, signed_size_type turn_index, signed_size_type start_turn_index, segment_identifier const& previous_seg_id, int& selected_op_index) const { bool result = false; selected_op_index = -1; if (turn.both(operation_continue)) { result = select_cc_operation(turn, start_turn_index, selected_op_index); } else if BOOST_GEOMETRY_CONSTEXPR (OverlayType == overlay_dissolve) { result = select_preferred_operation(turn, turn_index, start_turn_index, selected_op_index); } else { result = select_noncc_operation(turn, previous_seg_id, selected_op_index); } if (result) { debug_traverse(turn, turn.operations[selected_op_index], "Accepted"); } return result; } inline int starting_operation_index(turn_type const& turn) const { for (int i = 0; i < 2; i++) { if (turn.operations[i].visited.started()) { return i; } } return -1; } inline bool both_finished(turn_type const& turn) const { for (int i = 0; i < 2; i++) { if (! turn.operations[i].visited.finished()) { return false; } } return true; } // Returns a priority, the one with the highst priority will be selected // 0: not OK // 1: OK following spike out // 2: OK but next turn is in same cluster // 3: OK // 4: OK and start turn matches // 5: OK and start turn and start operation both match, this is the best inline int priority_of_turn_in_cluster_union(sort_by_side::rank_type selected_rank, typename sbs_type::rp const& ranked_point, cluster_info const& cinfo, signed_size_type start_turn_index, int start_op_index) const { if (ranked_point.rank != selected_rank || ranked_point.direction != sort_by_side::dir_to) { return 0; } auto const& turn = m_turns[ranked_point.turn_index]; auto const& op = turn.operations[ranked_point.operation_index]; // Check finalized: TODO: this should be finetuned, it is not necessary if (op.visited.finalized()) { return 0; } if BOOST_GEOMETRY_CONSTEXPR (OverlayType != overlay_dissolve) { if (op.enriched.count_left != 0 || op.enriched.count_right == 0) { // Check counts: in some cases interior rings might be generated with // polygons on both sides. For dissolve it can be anything. // If this forms a spike, going to/from the cluster point in the same // (opposite) direction, it can still be used. return cinfo.spike_count > 0 ? 1 : 0; } } bool const to_start = ranked_point.turn_index == start_turn_index; bool const to_start_index = ranked_point.operation_index == start_op_index; bool const next_in_same_cluster = cinfo.turn_indices.count(op.enriched.get_next_turn_index()) > 0; // Return the priority as described above return to_start && to_start_index ? 5 : to_start ? 4 : next_in_same_cluster ? 2 : 3 ; } template inline turn_operation_type const& operation_from_rank(RankedPoint const& rp) const { return m_turns[rp.turn_index].operations[rp.operation_index]; } inline sort_by_side::rank_type select_rank(sbs_type const& sbs) const { static bool const is_intersection = target_operation == operation_intersection; // Take the first outgoing rank corresponding to incoming region, // or take another region if it is not isolated auto const& in_op = operation_from_rank(sbs.m_ranked_points.front()); for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++) { auto const& rp = sbs.m_ranked_points[i]; if (rp.rank == 0 || rp.direction == sort_by_side::dir_from) { continue; } auto const& out_op = operation_from_rank(rp); if (out_op.operation != target_operation && out_op.operation != operation_continue) { continue; } if (in_op.enriched.region_id == out_op.enriched.region_id || (is_intersection && ! out_op.enriched.isolated)) { // Region corresponds to incoming region, or (for intersection) // there is a non-isolated other region which should be taken return rp.rank; } } return -1; } inline bool select_from_cluster_union(signed_size_type& turn_index, cluster_info const& cinfo, int& op_index, sbs_type const& sbs, signed_size_type start_turn_index, int start_op_index) const { sort_by_side::rank_type const selected_rank = select_rank(sbs); int current_priority = 0; for (std::size_t i = 1; i < sbs.m_ranked_points.size(); i++) { auto const& ranked_point = sbs.m_ranked_points[i]; if (ranked_point.rank > selected_rank) { break; } int const priority = priority_of_turn_in_cluster_union(selected_rank, ranked_point, cinfo, start_turn_index, start_op_index); if (priority > current_priority) { current_priority = priority; turn_index = ranked_point.turn_index; op_index = ranked_point.operation_index; } } return current_priority > 0; } inline bool analyze_cluster_intersection(signed_size_type& turn_index, int& op_index, sbs_type const& sbs) const { // Select the rank based on regions and isolation sort_by_side::rank_type const selected_rank = select_rank(sbs); if (selected_rank <= 0) { return false; } // From these ranks, select the index: the first, or the one with // the smallest remaining distance typename turn_operation_type::comparable_distance_type min_remaining_distance = 0; std::size_t selected_index = sbs.m_ranked_points.size(); for (std::size_t i = 0; i < sbs.m_ranked_points.size(); i++) { auto const& ranked_point = sbs.m_ranked_points[i]; if (ranked_point.rank > selected_rank) { break; } else if (ranked_point.rank == selected_rank) { auto const& op = operation_from_rank(ranked_point); if (op.visited.finalized()) { // This direction is already traveled, // it cannot be traveled again continue; } if (selected_index == sbs.m_ranked_points.size() || op.remaining_distance < min_remaining_distance) { // It was unassigned or it is better selected_index = i; min_remaining_distance = op.remaining_distance; } } } if (selected_index == sbs.m_ranked_points.size()) { // Should not happen, there must be points with the selected rank return false; } auto const& ranked_point = sbs.m_ranked_points[selected_index]; turn_index = ranked_point.turn_index; op_index = ranked_point.operation_index; return true; } inline bool fill_sbs(sbs_type& sbs, signed_size_type turn_index, std::set const& cluster_indices, segment_identifier const& previous_seg_id) const { for (auto cluster_turn_index : cluster_indices) { turn_type const& cluster_turn = m_turns[cluster_turn_index]; if (cluster_turn.discarded) { // Defensive check, discarded turns should not be in cluster continue; } for (int i = 0; i < 2; i++) { sbs.add(cluster_turn, cluster_turn.operations[i], cluster_turn_index, i, previous_seg_id, m_geometry1, m_geometry2, cluster_turn_index == turn_index); } } if (! sbs.has_origin()) { return false; } turn_type const& turn = m_turns[turn_index]; sbs.apply(turn.point); return true; } inline bool select_turn_from_cluster(signed_size_type& turn_index, int& op_index, signed_size_type start_turn_index, int start_op_index, segment_identifier const& previous_seg_id) const { bool const is_union = target_operation == operation_union; turn_type const& turn = m_turns[turn_index]; BOOST_ASSERT(turn.is_clustered()); auto mit = m_clusters.find(turn.cluster_id); BOOST_ASSERT(mit != m_clusters.end()); cluster_info const& cinfo = mit->second; sbs_type sbs(m_strategy); if (! fill_sbs(sbs, turn_index, cinfo.turn_indices, previous_seg_id)) { return false; } if BOOST_GEOMETRY_CONSTEXPR (is_union) { if (cinfo.open_count == 0 && cinfo.spike_count > 0) { // Leave the cluster from the spike. for (std::size_t i = 0; i + 1 < sbs.m_ranked_points.size(); i++) { auto const& current = sbs.m_ranked_points[i]; auto const& next = sbs.m_ranked_points[i + 1]; if (current.rank == next.rank && current.direction == detail::overlay::sort_by_side::dir_from && next.direction == detail::overlay::sort_by_side::dir_to) { turn_index = next.turn_index; op_index = next.operation_index; return true; } } } } cluster_exits exits(m_turns, cinfo.turn_indices, sbs); if (exits.apply(turn_index, op_index)) { return true; } bool result = false; if BOOST_GEOMETRY_CONSTEXPR (is_union) { result = select_from_cluster_union(turn_index, cinfo, op_index, sbs, start_turn_index, start_op_index); if (! result) { // There no way out found, try second pass in collected cluster exits result = exits.apply(turn_index, op_index, false); } } else { result = analyze_cluster_intersection(turn_index, op_index, sbs); } return result; } // Analyzes a non-clustered "ii" intersection, as if it is clustered. inline bool analyze_ii_intersection(signed_size_type& turn_index, int& op_index, turn_type const& current_turn, segment_identifier const& previous_seg_id) { sbs_type sbs(m_strategy); // Add this turn to the sort-by-side sorter for (int i = 0; i < 2; i++) { sbs.add(current_turn, current_turn.operations[i], turn_index, i, previous_seg_id, m_geometry1, m_geometry2, true); } if (! sbs.has_origin()) { return false; } sbs.apply(current_turn.point); bool result = analyze_cluster_intersection(turn_index, op_index, sbs); return result; } inline void change_index_for_self_turn(signed_size_type& to_vertex_index, turn_type const& start_turn, turn_operation_type const& start_op, int start_op_index) const { if BOOST_GEOMETRY_CONSTEXPR (OverlayType != overlay_buffer && OverlayType != overlay_dissolve) { return; } else // else prevents unreachable code warning { const bool allow_uu = OverlayType != overlay_buffer; // It travels to itself, can happen. If this is a buffer, it can // sometimes travel to itself in the following configuration: // // +---->--+ // | | // | +---*----+ *: one turn, with segment index 2/7 // | | | | // | +---C | C: closing point (start/end) // | | // +------------+ // // If it starts on segment 2 and travels to itself on segment 2, that // should be corrected to 7 because that is the shortest path // // Also a uu turn (touching with another buffered ring) might have this // apparent configuration, but there it should // always travel the whole ring turn_operation_type const& other_op = start_turn.operations[1 - start_op_index]; bool const correct = (allow_uu || ! start_turn.both(operation_union)) && start_op.seg_id.source_index == other_op.seg_id.source_index && start_op.seg_id.multi_index == other_op.seg_id.multi_index && start_op.seg_id.ring_index == other_op.seg_id.ring_index && start_op.seg_id.segment_index == to_vertex_index; #if defined(BOOST_GEOMETRY_DEBUG_TRAVERSE) std::cout << " WARNING: self-buffer " << " correct=" << correct << " turn=" << operation_char(start_turn.operations[0].operation) << operation_char(start_turn.operations[1].operation) << " start=" << start_op.seg_id.segment_index << " from=" << to_vertex_index << " to=" << other_op.enriched.travels_to_vertex_index << std::endl; #endif if (correct) { to_vertex_index = other_op.enriched.travels_to_vertex_index; } } } bool select_turn_from_enriched(signed_size_type& turn_index, segment_identifier& previous_seg_id, signed_size_type& to_vertex_index, signed_size_type start_turn_index, int start_op_index, turn_type const& previous_turn, turn_operation_type const& previous_op, bool is_start) const { to_vertex_index = -1; if (previous_op.enriched.next_ip_index < 0) { // There is no next IP on this segment if (previous_op.enriched.travels_to_vertex_index < 0 || previous_op.enriched.travels_to_ip_index < 0) { return false; } to_vertex_index = previous_op.enriched.travels_to_vertex_index; if (is_start && previous_op.enriched.travels_to_ip_index == start_turn_index) { change_index_for_self_turn(to_vertex_index, previous_turn, previous_op, start_op_index); } turn_index = previous_op.enriched.travels_to_ip_index; previous_seg_id = previous_op.seg_id; } else { // Take the next IP on this segment turn_index = previous_op.enriched.next_ip_index; previous_seg_id = previous_op.seg_id; } return true; } bool select_turn(signed_size_type start_turn_index, int start_op_index, signed_size_type& turn_index, int& op_index, int previous_op_index, signed_size_type previous_turn_index, segment_identifier const& previous_seg_id, bool is_start, bool has_points) { turn_type const& current_turn = m_turns[turn_index]; bool const back_at_start_cluster = has_points && current_turn.is_clustered() && m_turns[start_turn_index].cluster_id == current_turn.cluster_id; if BOOST_GEOMETRY_CONSTEXPR (target_operation == operation_intersection) { // Intersection or difference if (has_points && (turn_index == start_turn_index || back_at_start_cluster)) { // Intersection can always be finished if returning turn_index = start_turn_index; op_index = start_op_index; return true; } if (! current_turn.is_clustered() && current_turn.both(operation_intersection) && analyze_ii_intersection(turn_index, op_index, current_turn, previous_seg_id)) { return true; } } else if (turn_index == start_turn_index || back_at_start_cluster) { // Union or buffer: cannot return immediately to starting turn, because it then // might miss a formed multi polygon with a touching point. auto const& current_op = current_turn.operations[op_index]; signed_size_type const next_turn_index = current_op.enriched.get_next_turn_index(); bool const to_other_turn = next_turn_index >= 0 && m_turns[next_turn_index].cluster_id != current_turn.cluster_id; if (! to_other_turn) { // Return to starting point turn_index = start_turn_index; op_index = start_op_index; return true; } } if (current_turn.is_clustered()) { if (! select_turn_from_cluster(turn_index, op_index, start_turn_index, start_op_index, previous_seg_id)) { return false; } if (is_start && turn_index == previous_turn_index) { op_index = previous_op_index; } } else { op_index = starting_operation_index(current_turn); if (op_index == -1) { if (both_finished(current_turn)) { return false; } if (! select_operation(current_turn, turn_index, start_turn_index, previous_seg_id, op_index)) { return false; } } } return true; } private : Geometry1 const& m_geometry1; Geometry2 const& m_geometry2; Turns& m_turns; Clusters const& m_clusters; RobustPolicy const& m_robust_policy; Strategy m_strategy; Visitor& m_visitor; }; }} // namespace detail::overlay #endif // DOXYGEN_NO_DETAIL }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_TRAVERSAL_HPP