// // Copyright (c) 2016-2019 Vinnie Falco (vinnie dot falco at gmail dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // Official repository: https://github.com/boostorg/beast // #ifndef BOOST_BEAST_STREAM_TRAITS_HPP #define BOOST_BEAST_STREAM_TRAITS_HPP #include #include #include #include namespace boost { namespace beast { /** A trait to determine the lowest layer type of a stack of stream layers. If `t.next_layer()` is well-defined for an object `t` of type `T`, then `lowest_layer_type` will be an alias for `lowest_layer_type`, otherwise it will be the type `std::remove_reference`. @param T The type to determine the lowest layer type of. @return The type of the lowest layer. */ template #if BOOST_BEAST_DOXYGEN using lowest_layer_type = __see_below__; #else using lowest_layer_type = detail::lowest_layer_type; #endif /** Return the lowest layer in a stack of stream layers. If `t.next_layer()` is well-defined, returns `get_lowest_layer(t.next_layer())`. Otherwise, it returns `t`. A stream layer is an object of class type which wraps another object through composition, and meets some or all of the named requirements of the wrapped type while optionally changing behavior. Examples of stream layers include `net::ssl::stream` or @ref beast::websocket::stream. The owner of a stream layer can interact directly with the wrapper, by passing it to stream algorithms. Or, the owner can obtain a reference to the wrapped object by calling `next_layer()` and accessing its members. This is necessary when it is desired to access functionality in the next layer which is not available in the wrapper. For example, @ref websocket::stream permits reading and writing, but in order to establish the underlying connection, members of the wrapped stream (such as `connect`) must be invoked directly. Usually the last object in the chain of composition is the concrete socket object (for example, a `net::basic_socket` or a class derived from it). The function @ref get_lowest_layer exists to easily obtain the concrete socket when it is desired to perform an action that is not prescribed by a named requirement, such as changing a socket option, cancelling all pending asynchronous I/O, or closing the socket (perhaps by using @ref close_socket). @par Example @code // Set non-blocking mode on a stack of stream // layers with a regular socket at the lowest layer. template void set_non_blocking (Stream& stream) { error_code ec; // A compile error here means your lowest layer is not the right type! get_lowest_layer(stream).non_blocking(true, ec); if(ec) throw system_error{ec}; } @endcode @param t The layer in a stack of layered objects for which the lowest layer is returned. @see close_socket, lowest_layer_type */ template lowest_layer_type& get_lowest_layer(T& t) noexcept { return detail::get_lowest_layer_impl( t, detail::has_next_layer{}); } //------------------------------------------------------------------------------ /** A trait to determine the return type of get_executor. This type alias will be the type of values returned by by calling member `get_exector` on an object of type `T&`. @param T The type to query @return The type of values returned from `get_executor`. */ // Workaround for ICE on gcc 4.8 #if BOOST_BEAST_DOXYGEN template using executor_type = __see_below__; #elif BOOST_WORKAROUND(BOOST_GCC, < 40900) template using executor_type = typename std::decay::type::executor_type; #else template using executor_type = typename std::decay().get_executor())>::type; #endif /** Determine if `T` has the `get_executor` member function. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` has the member function with the correct signature, else type will be `std::false_type`. @par Example Use with tag dispatching: @code template void maybe_hello(T const& t, std::true_type) { net::post( t.get_executor(), [] { std::cout << "Hello, world!" << std::endl; }); } template void maybe_hello(T const&, std::false_type) { // T does not have get_executor } template void maybe_hello(T const& t) { maybe_hello(t, has_get_executor{}); } @endcode Use with `static_assert`: @code struct stream { using executor_type = net::io_context::executor_type; executor_type get_executor() noexcept; }; static_assert(has_get_executor::value, "Missing get_executor member"); @endcode */ #if BOOST_BEAST_DOXYGEN template using has_get_executor = __see_below__; #else template struct has_get_executor : std::false_type {}; template struct has_get_executor().get_executor())>> : std::true_type {}; #endif //------------------------------------------------------------------------------ /** Determine if at type meets the requirements of SyncReadStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(SyncReadStream& stream) { static_assert(is_sync_read_stream::value, "SyncReadStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(SyncReadStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_sync_read_stream = __see_below__; #else template struct is_sync_read_stream : std::false_type {}; template struct is_sync_read_stream() = std::declval().read_some( std::declval()), std::declval() = std::declval().read_some( std::declval(), std::declval()) )>> : std::true_type {}; #endif /** Determine if `T` meets the requirements of SyncWriteStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(SyncReadStream& stream) { static_assert(is_sync_read_stream::value, "SyncReadStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(SyncReadStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_sync_write_stream = __see_below__; #else template struct is_sync_write_stream : std::false_type {}; template struct is_sync_write_stream() = std::declval().write_some( std::declval())) ,std::declval() = std::declval().write_some( std::declval(), std::declval()) )>> : std::true_type {}; #endif /** Determine if `T` meets the requirements of @b SyncStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(SyncStream& stream) { static_assert(is_sync_stream::value, "SyncStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(SyncStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_sync_stream = __see_below__; #else template using is_sync_stream = std::integral_constant::value && is_sync_write_stream::value>; #endif //------------------------------------------------------------------------------ /** Determine if `T` meets the requirements of AsyncReadStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(AsyncReadStream& stream) { static_assert(is_async_read_stream::value, "AsyncReadStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(AsyncReadStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_async_read_stream = __see_below__; #else template struct is_async_read_stream : std::false_type {}; template struct is_async_read_stream().async_read_some( std::declval(), std::declval()) )>> : std::integral_constant::value > {}; #endif /** Determine if `T` meets the requirements of AsyncWriteStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(AsyncWriteStream& stream) { static_assert(is_async_write_stream::value, "AsyncWriteStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(AsyncWriteStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_async_write_stream = __see_below__; #else template struct is_async_write_stream : std::false_type {}; template struct is_async_write_stream().async_write_some( std::declval(), std::declval()) )>> : std::integral_constant::value > {}; #endif /** Determine if `T` meets the requirements of @b AsyncStream. Metafunctions are used to perform compile time checking of template types. This type will be `std::true_type` if `T` meets the requirements, else the type will be `std::false_type`. @par Example Use with `static_assert`: @code template void f(AsyncStream& stream) { static_assert(is_async_stream::value, "AsyncStream type requirements not met"); ... @endcode Use with `std::enable_if` (SFINAE): @code template typename std::enable_if::value>::type f(AsyncStream& stream); @endcode */ #if BOOST_BEAST_DOXYGEN template using is_async_stream = __see_below__; #else template using is_async_stream = std::integral_constant::value && is_async_write_stream::value>; #endif //------------------------------------------------------------------------------ /** Default socket close function. This function is not meant to be called directly. Instead, it is called automatically when using @ref close_socket. To enable closure of user-defined types or classes derived from a particular user-defined type, this function should be overloaded in the corresponding namespace for the type in question. @see close_socket */ template< class Protocol, class Executor> void beast_close_socket( net::basic_socket< Protocol, Executor>& sock) { boost::system::error_code ec; sock.close(ec); } namespace detail { struct close_socket_impl { template void operator()(T& t) const { using beast::beast_close_socket; beast_close_socket(t); } }; } // detail /** Close a socket or socket-like object. This function attempts to close an object representing a socket. In this context, a socket is an object for which an unqualified call to the function `void beast_close_socket(Socket&)` is well-defined. The function `beast_close_socket` is a customization point, allowing user-defined types to provide an algorithm for performing the close operation by overloading this function for the type in question. Since the customization point is a function call, the normal rules for finding the correct overload are applied including the rules for argument-dependent lookup ("ADL"). This permits classes derived from a type for which a customization is provided to inherit the customization point. An overload for the networking class template `net::basic_socket` is provided, which implements the close algorithm for all socket-like objects (hence the name of this customization point). When used in conjunction with @ref get_lowest_layer, a generic algorithm operating on a layered stream can perform a closure of the underlying socket without knowing the exact list of concrete types. @par Example 1 The following generic function synchronously sends a message on the stream, then closes the socket. @code template void hello_and_close (WriteStream& stream) { net::write(stream, net::const_buffer("Hello, world!", 13)); close_socket(get_lowest_layer(stream)); } @endcode To enable closure of user defined types, it is necessary to provide an overload of the function `beast_close_socket` for the type. @par Example 2 The following code declares a user-defined type which contains a private socket, and provides an overload of the customization point which closes the private socket. @code class my_socket { net::ip::tcp::socket sock_; public: my_socket(net::io_context& ioc) : sock_(ioc) { } friend void beast_close_socket(my_socket& s) { error_code ec; s.sock_.close(ec); // ignore the error } }; @endcode @param sock The socket to close. If the customization point is not defined for the type of this object, or one of its base classes, then a compiler error results. @see beast_close_socket */ #if BOOST_BEAST_DOXYGEN template void close_socket(Socket& sock); #else BOOST_BEAST_INLINE_VARIABLE(close_socket, detail::close_socket_impl) #endif } // beast } // boost #endif